
Bio-inspired Computing
Z. Brock, N. Karst, M. Siripong

15 December 2005

1



Introduction

The goal of this project was to investigate and sum-
marize the many ways in which cellular automata
can deepen our understanding of the world around
us. Cellular automata are extremely valuable because
their behavior on micro- and macro-scopic levels is
much like the behavior of the universe. Small, indi-
vidually functioning units, from hydrogen atoms to
plants in a jungle, interact with their neighbors to
create a final emergent structure that is greater than
the sum of its parts. Our general focus in this project
was on systems that cellular automata can model eas-
ily and effectively. However we also found links in the
other direction, where cellular automata like systems
in nature had inspired and influenced computing. In
order to investigate a wide variety of these links, the
project was broken up into five parts: flocking, epi-
demiology, crystal formation, genetic algorithms and
evolvable hardware, and pattern formation.

Flocking

The motion of a flock of birds flying south or of
hundreds of fish in a school is completely unique to
nature. This phenomena, where animals of a cer-
tain species group together and travel in high-density
packs, is known in the computer science world as
flocking. It is a particularly interesting phenomena
because it is impossible for each entity in a flock to
know exactly where it is headed - schools of fish have
been recorded as being up to 17 miles long1. The
implication here is some semblance of localized di-
rection. If each fish takes into account information
about the other fish surrounding it, it may set its own
course accordingly. Similar to cellular automata, en-
tities within a flock may employ simple rules to gov-
ern their speed and direction. This behavioral model
for movement within a flock is a useful way to sim-
ulate the motion of animals in movies, games, or for
scientific research.

Prior to 1987 when Craig W. Reynolds first de-
scribed the behavioral model as a means for mod-

1Reynolds, C.W.,1987. Flocks, herds and schools:a dis-
tributed behavioral model. Computer Graphics21:25-33.

elling flocks of birds2, simulated flocks had to be cre-
ated by giving each individual bird a predefined path.
This is both tedious and dramatically limited, with
the amount of input required exponentiated by the
number of entities within the flock. But by having
each entity follow simple rules rather than a set path,
they may fly freely and infinitely while still exhibiting
pseudo-natural behavior.

The rules originally described for flocking by
Reynolds have held true, with some modification with
time, as new programmers deem necessary. The three
basic rules are as follows:

1. Collision Avoidance: Steer to avoid obstacles
and crowding local flockmates

2. Alignment: Steer towards the average heading
of local flockmates

3. Cohesion: Steer to move toward the average po-
sition of local flockmates

Figure 1: An illustrated explanation of the three pri-
mary rules for behavioral modelling of flocks. On the
left, a boid considers a vector which prevents crowd-
ing its neighbors. In the center, a boid directs its mo-
tion in the average direction of its neighboring boids.
Finally on the right a boid steers toward the average
location of its neighboring flockmates. Image credits
http://www.red3d.com

Simulations of birds, known as “boids,” are able to
fly independent of outside control using these basic
rules and information it gathers from its “neighbor-
hood.” A standard interpretation of this neighbor-
hood is a set distance and angle, where the angle
describes the boid’s line of sight. This is not to say
that birds and boids can’t see past this distance, but

2Reynolds, C.W.,1987. Flocks, herds and schools:a dis-
tributed behavioral model. Computer Graphics21:25-33.

1



rather that other boids within this sphere will influ-
ence its decisions. Many programmers have added
additional rules to suit their needs, such as a low pri-
ority destination goal, a boid’s desire to have a clear
line of sight, resulting in the well known “V” forma-
tion3, and many others4.

Behavioral animation such as boids has been used
frequently since its introduction in 1987. The army
of penguins marching in Tim Burton’s classic Bat-
man Returns used a modified version of the original
boid control code. The wildebeest stampede in the
animated picture The Lion King also used behavioral
animation. Behavoiral rule sets have also been used
to model migration patters of certain species of fish,
showing that individual input may lead to better liv-
ing conditions for the entre school5.

This concept of emergence - larger movements cre-
ated by many smaller ones, occurs everywhere in na-
ture, and its applications to computer science stretch
far beyond animations. The same theory can be used
to model other ntural phenomena such as fluid flow.
Rather than birds and boids, each particle in the flow
can be considered separately, with its own actions be-
ing governed by basic rules of physics and motion de-
pendant on its local surroundings. While seemingly
chaotic on the particle-level, these motions demon-
strate chaotic emergence, and can be used to model
flow on a larger scale.

Epidemiology

In recent years, modelling disease transmission
using cellular automata has received much attention
in the academic community. Whether describing
common influenza6, the recent spread of bird flu
in Southeast Asia7 or bubonic plague in medieval

3http : //mitpress.mit.edu/books/FLAOH/cbnhtml/home.html
4http : //www.navgen.com/3dboids/
5http : //mywebpages.comcast.net/kils/pitcher.htm
6Beauchemin, et al. “A simple cellular automaton model for

influenza A viral infections”, Journal of Theoretical Biology,
August 2004, pgs. 223-234.

7Situngkir, Hokky. “Epdiemiology through Cellular Au-
tomata, Case of Study: Avian Influenza in Indonesia”, sub-
mitted to Bandung Fe Board of Science, January 2004.

Europe8, cellular automata have much information
and insight to provide to biologists. In the following
paragraphs, we will discuss the relevant parameters
in disease transmission, the way in which these
qualities translate to properties of cellular automata
and the results and conclusions of experimentation.

Each disease has a unique mode of operation. Some
spread incredibly quickly through a host population
but do little lasting damage. Others spread slowly
but have serious medical consequences for the in-
fected. The dynamics of disease transmission are
governed by four key quantities: infectivity, latency,
duration and mortality rate.

As members of a susceptible population come in
contact with a diseased individual, there is some
probability that the sickness will spread. We de-
fine the probability of transmission under a given
set of interaction conditions (e.g., casual, close and
intimate interactions) to be the infectivity I of the
disease High infectivities lead to a large percentage
of the population contracting the disease. In cellu-
lar automata, infectivity represents the probability
that a cell will contract the disease given that another
cell in its neighborhood is infected. In actual disease
transmission, the infectivity of a disease is actually
a probability distribution based on characteristics of
the susceptible individual. Age, sex and race can all
play a part in contracting a disease. In most cellular
automata models, these inconsistencies are ignored;
infectivity is identical for all cells in the simulation.

After an individual has contracted a disease, the
bacteria or virus lies dormant in the host. For some
latency period λ, the host is not contagious. After a
critical mass of pathogens has been replicated, the in-
dividual becomes contagious and begins to spread to
the infection to others based on the infectivity prob-
ability I. In the vast majority of diseases, it is only
after becoming contagious that the individual begins
to show symptoms of the disease. This makes treat-
ment and containment of diseases substantially more
difficult. The concept of quarantine was developed
as a countermeasures against this latency delay. By

8Keeling and Gilligan, “Bubonic plague: a metapopulation
model of a zoonosis”, Proceedings of the Royal Society B, Au-
gust 2000, pgs. 2219-2230.

2



segregating seemingly-healthy individuals who have
had close contact with infected individuals, author-
ities hope to contain persons in the latency period.
Without this kind of control the disease can spread
unchecked. In cellular automata, latent cells behave
in the same fashion as ordinary cells. As they are not
contagious until the end of the latency period, they
cannot spread the disease to their neighbors. And,
as each latent cell has already contracted the disease,
they are also unable to be reinfected. Thus, latent
cells bide their time until becoming contagious.

Figure 2: Above we see a disease transmission sim-
ulation given I = .5, D = 3, λ = 3,M = .5. Green
dots indicate susceptible individuals; orange dots rep-
resent latent carriers; red dots represent contagious
persons; blue dots denote recoverees; white space in-
dicates a death. While not necessarily physically de-
scriptive, the values used allow us to clearly see the
dynamics of the system. Beginning with a single in-
fected individual, we proceed to take snapshots over
time. We can see that given stagnant neighborhoods,
infections spreads out symmetrically from the point
of origin. Any asymmetries are caused by interference
with a disease-free boundary condition necessary for
computation.

Every disease has a characteristic timescale. For
instance, both the common cold and influenza last
seven to ten days. We define the total period of time

that an individual will host the bacteria or virus as
the infection duration D. As with the latency delay,
infection duration is normally a complex function of
attributes such as age, sex, race and medical history.
In modelling disease transmission, we ignore differ-
ences between individuals and claim that the disease
has a characteristic duration. For this length of time,
the infected cell will be contagious, spreading the dis-
ease to neighboring cells based on infectivity. At the
end of the infection duration, the individual will ei-
ther recover or die.

The fate of the infected individual is a function
of the mortality rate M of the disease. This is per-
haps the most crucial parameter in terms of physical
relevance. Diseases such as common influenza that
spread relatively easily through susceptible popula-
tions but rarely kill are far less concerning than dis-
eases such as ebola that spread slower but kill nearly
every person infected. As with the other parameters
in our simulation, mortality rate depends on many at-
tributes of the infected individual. We will disregard
these dependencies and state that the mortality rate
of a given disease is constant over the population.

Cellular automata models of disease transmission
differ from normal cellular networks in several key
ways. First, the transmission process is nondeter-
ministic. That is, every simulation will be slightly
different than any other experiment. In most au-
tomata, a set of deterministic conditions maps out
the exact path to be taken by the system. In effect,
a denumerable number of paths can be defined based
on the size of the rule set. In systems involving prob-
abilistic variability, the number of possible configu-
rations is infinite. While producing rich dynamics,
this indeterminism also makes it much more difficult
to make definitive statements about the system. We
are forced to speak in generalities rather than truths.

While certainly limiting in their scope, cellular
automata models of disease transmission give re-
searchers the traction needed to begin tackling the
tough questions facing epidemiologists. How will fac-
tors such as latency and mortality effect propagation
of a disease? In what way will quarantines, vaccina-
tions and naturally resistant individuals change the
course of an epidemic? Cellular automata provide a
vital stepping stone to more realistic and complete

3



models that may one day provide answers to these
questions.

Crystal Formation

With nearest neighbor interactions dominate local
dynamics, atoms or molecules in a crystalline lattice
can be reasonably modelled as cellular automata9.
Cells communicate through primarily through elec-
tromagnetic forces, though in some cases heat trans-
fer and similar signals can play a significant role in
crystal formation. A notable distinction between
these crystalline cellular automata and many other
cell networks used for computation and modelling is
the domain over which the lattice is defined. This un-
derlying structure can take any of a number of shapes
depending on the physical nature of the atoms and
molecules involved. An amethyst or diamond crystal,
for instance, would lie in the typical rectangular do-
main. A water crystal (i.e., ice), however, would lie
on a hexagonal domain. Each cell now has six neigh-
bors to consider instead of the typical four. The ways
in which these crystalline structures grow is directly
dependent on both the lattice on which it will grow
and the rule set governing the addition of new cells
to the crystal.

One thoroughly researched cellular automata
crystal-growth model is that of freezing water. The
amazing variety, complexity and symmetry inherent
in snowflakes was first earnestly research by Wilson
Bentley. Indeed, even today, Bentley’s collection10 of
snowflake images is second to none. Moreover, Bent-
ley was one of the first physicists investigate the phys-
ical reactions causing the formation of snowflakes in
a variety of different types of cloud.

In a natural continuation, Steven Wolfram defined
a elegant and functional model for snowflake growth
using cellular automata11 . Defined over a hexago-
nal lattice, the flake will grow based on the simplest
imaginable rule: if a single neighbor is on in the pre-
vious iteration, a cell will turn on. For convenience,
we denote the number of active neighbors to be η.

9Wolfram, Steven A New Kind of Science. pgs. 371-373
10http://library.ssec.wisc.edu/bentley/copyright.html
11Wolfram, Steven. A New Kind of Science.

Figure 3: Above we see two examples of crystals
grown on a hexagonal lattice. Black cells indicate
areas of lattice that are participating in the crys-
tal. The upper series features the classic “snowflake”
simulation. Surprisingly, the rich structures observed
come from the simplest of governing rules: if a single
neighbor is part of the crystal, a cell will incorporate
itself in to the crystal. That is, if a single neighbor
is black, turn black. In the lower example, we see an
equivalent simulation in which two neighbors must
be in the crystal for the a cell to participate.

Thus, Wolfram’s snowflake is governed by η = 1. In
the spirit of crystal growth, all cells are state holding.
That is to say, once a section of lattice is occupied
with a chunk of frozen water, it will always contain
this ice. In this way, the crystal grows out over time.
We see can example of this type of growth in Figure
3. An analogous example with η = 2. We note the
decreased structural complexity. Wolfram physically
justifies his choice of the η = 1 governance. As water
freezes, a fixed amount of heat is given off. Two or
more of these heat quanta, he argues, will prohibit
a nearby cells from freezing. Thus, only cells with a
single neighbor present in the previous iteration may
participate in the crystal.

Also of practical interest are crystals defined over
a rectangular domain. One such crystal can be seen
in Figure 4. While snowflakes display an elegant
hexagonal symmetry, rectangular crystal have differ-
ent, but equally intriguing properties. We can see in
our example that the pattern created by the crystal

4



Figure 4: In this figure we see a crystal grown on
a rectangular domain. Like their hexagonal coun-
terparts, rectangular crystals have many interesting
properties. For instance, in the example shown above
we see that as the crystal grows, there is a certain pe-
riodicity in the forms the crystal will assume. That
is, the crystal at time t = 6 is of the same functional
form as at time t = 14. The crystal has simply scaled
over time. Mathematically speaking, this result is ex-
tremely interesting as it indicates underlying periodic
dynamics in crystalline cellular automata.

formation repeats over time. That is, the crystal as-
sumes the same functional form at different points in
time. In this particular case, the repeated form is
a fully filled diamond. This periodic quality is ap-
parent in a number of the unfeatured examples we
have created. This result is intriguing for a number
of reasons. First, the periodic nature of the growth
sequence is quite mathematically remarkable. The
presence of periodic dynamics in a system with such
simple governing rules indicates a high degree of un-
derlying complexity. Indeed, this periodicity creates
a fractal structure that will govern the relation of one
layer to the next. Second, the physical interpretation
of this periodicity leads us to the concept that we
can make “perfect” crystals of arbitrary size. Thus,
any asymmetries observed are a result of stochastic or
applied environmental factors. This may seem read-
ily apparent but without theoretical confirmation, it
would be very difficult to definitively state the con-
figuration preferred by the crystal.

As with many cellular automata systems, the sim-
plicity of the rule set and iteration scheme does not
prohibit startlingly accurate models of natural phe-
nomena. This is especially true for crystal growth,
where physical dynamics are dictated in much the
same way as cellular automata. By carefully consid-

ering the local physics governing crystal formation,
we can define cellular automata rules that have a
solid basis in accepted physics. Our result, then, is
two-fold. We arrive at a physically accurate represen-
tation of the modelled system as well as gain general
acceptance for cellular automata as efficient and ef-
fective modelling tools.

Pattern Formation

Patterns are present everywhere in nature. Many of
the creatures on land and sea exhibit beautiful pat-
terning on their fur, skin or shells. For whatever pur-
pose, evolution gave these animals their patterns, and
be it camouflage or for attracting prospective mates,
the animals themselves have no control over their col-
oration.

It is theorized that perhaps each of the pigmenta-
tion cells is capable of choosing for itself what color
it should be. In The New Kind of Science, Stephen
Wolfram suggests12 that perhaps these cells follow
basic rules which govern their coloration. Some shell
patterns are quite simple, stripes or spots, yet oth-
ers develop very complicated patterns. These more
complex patterns, as pictured in Figure 5, are very
similar to patterns generated by cellular automata.
To think that perhaps these shells are created in a
similar fashion to cellular automata does not seem
far from the truth.

Mollusc shells grow in a fashion similar to the
growth of a fingernail - new material is created by
a lip of soft tissue and grows outward. That is to
say, a ’row’ of cells are constructed at the same time,
and perhaps may be colored in relation to their near-
est neighbors. The cells in the soft tissue may in-
spect the nearby shell cells, and choose the color for
the new piece of cell based on rules taking those
nearby cells into account. One-dimensional cellular
automata function in much the same way, and their
outputs, when binary, are strikingly similar.

12Wolfram, Steven. A New Kind of Science

5



Figure 5: The patterns displayed on these seashells
are not uncommon in nature, nor are they uncom-
mon in one-dimensional cellular automata. Stephen
Wolfram believes this is not a coincidence.

Genetic Algorithms

A way in which biology has inspired computing is
through the use of Genetic Algorithms (GA). A Ge-
netic Algorithm essentially mimics evolution by forc-
ing a system adapt itself to a presented problem13.
The basic operation of a GA is to take a sample pop-
ulation, evaluate their performance (or “fitness”), se-
lect pairs of high-ranking members to reproduce (via
“crossover”) and then apply random mutations. This
cycle is repeated hundreds or thousands of times until
there is little to no improvement in the fitness of the
resulting population. The members of a population
are often represented as binary strings, but they can
also be indexes in a lookup table, items in an array
or nearly any other data structure depending on how
the problem is designed. During each cycle a fitness
test is applied to each member (or “chromosome”) to

13Holland, John H (1975), “Adaptation in Natural and Ar-
tificial Systems”, University of Michigan Press, Ann Arbor

determine how well it has performed the task it for
which is being evolved. These tests are the core of
genetic algorithms. They guide the development of
the populations and determine when a suitable so-
lution has been found. An interesting application of
GAs is to circuit design in a field called Evolvable
Hardware. Until recently there was no easy way to
evolve hardware, but with the proliferation of Field
Programmable Gate Arrays (FPGAs) it is possible to
rapidly test a multitude of hardware configurations,
opening the door to genetic design of circuits. FP-
GAs are especially interesting because they provide
essentially a hardware representation of cellular au-
tomata. Each logic cell in an FPGA is laid out in a
grid and connected to four neighbors. By changing
the internal truth table for the FPGA one is basically
defining the logic inherent to a cell in a CA.

The idea of evolvable hardware was first demon-
strated by Adrian Thompson in 1996 when he evolved
a tone discriminator using an early version of an
FPGA14. The design requirement for the circuit was
to be able to tell the different between square wave
signals of 1 kHz and 10 kHz by outputting +5V for
one and 0v for the other. The problem was left pur-
posefully vague to see what sort of solutions were
arrived at. The circuit was constrained to only use a
10x10 array of logic cells in the FPGA with no exter-
nal connections except the input and output pins. No
clock was provided, forcing the circuit to evolve a con-
tinuous time solution, not a trivial problem even for
an experienced designer. The circuit was evolved in
the same basic method used by all GAs. Populations
consisted of 1800 bit strings. The bit strings repre-
sented the interconnections between adjacent units
by defining the truth table each logic cell would ap-
ply to the four inputs it received from its neighbors.
This also determined what sort of logical computa-
tion each cell would perform.

The circuit as described was run for several thou-
sand generations to generate a solution that met the
design specifications. The best performing circuit
from generation 5000 was chosen as the “final” cir-
cuit. This circuit made use of all 100 logic cells but

14A. Thompson. “An evolved circuit, intrinsic in silicon,
entwined with physics”, 1997

6



Figure 6: The actual input and output of the final
circuit.

not all of them were necessary. Through iteration and
experimentation most of the cells were eliminated as
being unnecessary to final performance. This resulted
in only 32 final cells needed to successfully discrimi-
nate between the two input signals. The experiment
was successful in its attempts to evolve a circuit to
perform this function. However this was not the most
interesting result of the experiment. In the final cir-
cuit there were 5 cells that were not directly hooked
into the path the signal took in the chip. However
suppressing any of the cells degraded the performance
of the system even though they did not directly affect
the circuit.

Figure 7: The final logic block configuration of the
FPGA. Grey cells are those that cannot be sup-
pressed but are not actually part of the signal path.

The only possible explanation for this behavior is
that the GA made use of the inherent properties of
the silicon on which the chip is printed, perhaps gen-
erating a magnetic field or exploiting some other sub-
tle interaction to create its solution circuit. This is a

solution that no human could have generated without
extensive and precise modelling of every component
in the chip down to the molecular level. In this way
the GA can be a more efficient designer than a human
by moving past the simplifications and assumptions a
person must make in order to work in the domain of
individual electrons. Extensive study of the circuit
as generated has yielded many questions and fewer
answers 15. While a design of the circuit can be ex-
tracted from the chromosome of the final circuit, sim-
ulations and even CMOS implementations of this cir-
cuit are non functional. The subtle timing and logical
loops present in the final circuit must make use of in-
herent characteristics of the chip on which it was de-
veloped and not more general principles. In addition,
changing which one hundred logic cells on the FPGA
are used or the temperature at which it operates can
degrade the performance on a spectrum from slightly
to completely. However the circuit can often recover
within a few hundred generations to ideal operation
under the new conditions, proving the robustness of
the GA. Several GAs can even be run in parallel on
different chips and with differing external conditions
to apply evolutionary pressure on each generation to
perform in a wide range of conditions16

Evolvable hardware and genetic algorithms also
much promise for devising solutions on the fly to
hardware failure from short circuits and breaks in a
motor control circuit17 to the disabling of three legs
on a quadruped robot18. These examples make use of
the same general format of algorithm as seen before
in the frequency discriminator. They create chromo-
somes, run fitness tests, and perform crossover and
mutation in a repeating cycle . From these and many
other examples it can be seen that Genetic Algo-
rithms as applied to hardware can be a very powerful
way to develop specific and highly efficient solutions
easily.

15A. Thompson and P. Layzell. “Unconventional Evolved
Electronics”, Communications of the ACM, vol. 42, 1999

16A. Thompson and P. Layzell and R. S. Zebulum. “Ex-
plorations in Design Space: Unconventional electronics design
through artificial evolution”, IEEE Trans. Evol. Comp, vol.
3, 1999.

17http : //ic.arc.nasa.gov/projects/eh2005/slides/gwaltneyeh05.pdf
18http : //ic.arc.nasa.gov/projects/eh2005/slides/berenson/index.htm

7



Figure 8: Drawing of the final circuit. This design
works in the specific location on the specific FPGA it
was designed on in continuous time and with varying
levels of efficacy under other conditions.

Conclusion

Despite the relatively straightforward rules govern-
ing the cellular automata and biologically inspired
systems discussed above, complex and emergent dy-
namics abound in each. Whether a flock of a hundred
boids deciding on a common course, a crystal forming
from a single, simple rule or a evolving circuit capital-
izing on imperfections in a silicon substrate, biolog-
ically inspired computing shows incredible promise.
In the years to come, we hope to see this amazing
field grow and yield results that will help researchers
not only understand natural phenomena but also also
bring bio-inspired innovation to more unconventional
applications.

8


	cover_page.pdf
	comp_arch_compiled_zachEdit.pdf

