
Gui Cavalcanti, Carl Herrmann
Computer Architecture, Fall 2008

12/18/2008

  Current biological research suggests certain
simple neuronal architectures are responsible
for complex organism behaviors

  Such architectures lend themselves easily to
sophisticated control via genetic algorithms

  Therefore, we decided to implement genetic
algorithms on a simple simulated robot with a
biomimetic neuronal control system

  Motor neurons are the closest
neurons to muscle groups
along the neural path

  They directly or indirectly
control one or more muscles
at a time

  They tend to control muscles
in such a way as to
individually command basic
actions such as “lift foot” (as
opposed to controlling
“twitch this one muscle”)

  They are inherently analog,
with the command signal
sent to them being amplified
by them proportionally

Raise Foot Raise Foot Raise Foot

  Multiple motor
neuron signals can be
superimposed on the
same muscle groups

  Superimposition leads
to complex motions

Raise Foot

Foot Forward

Raise Foot

Foot Forward

  Command neurons
control multiple motor
neurons to generate
complex actions

  Different amplitudes of
control signal to command
neurons produces
different sequences of
motor neuron action

  Command neurons can
control other command
neurons, leading to
extremely complex actions

Raise Foot Raise Foot

Foot Forward Foot Forward

Step Forward Step Forward

  Central pattern generators are essentially an
organism’s “clock” signal, a sinusoidal wave of
a given frequency

  This sinusoidal pattern is selectively fed into
command neurons to generate reciprocating
actions such as walking

  Command neurons can be superimposed
  Walk sideways + Walk forwards = Walk diagonally

  GAs are algorithms that mimic evolutionary
processes to produce improved function
performance given a set of parameters to modify
and an output metric to compare against

  They include biological functions such as selection,
breeding and mutation.

  They’re used for optimization where analytical
understanding of a system is difficult

  Require extensive computing power, but always
produce a “good” result, and always get “better”
with more computational power

  Genomes
  A genome is a term for parameters the genetic algorithm modifies, that are

inputs to the simulation
  In any one iteration of a genetic algorithm, multiple genomes are run and

their performance is compared
  Selection

  Simulations provide outputs given genome inputs to compare against a
selection metric, for each set of generated parameters

  Selection algorithm then determines which genomes are “good” and which
are “bad”, and selects the top performers to continue forward

  Breeding
  Good genomes live on to the next generation
  Empty spaces in the iteration docket are filled with “children”, crossed

genomes of well-performing parents
  Mutations

  Some genome attributes are randomized within a restricted range

  Create a robot model whose movement is
dictated by a set of simple motor neurons, and
evolve several command neurons that control
simple coordinated actions

  Simple simulator
  Written in Matlab due to previous student experience and ease of

data display
  Planar world with high viscous drag

  Simple robot model
  Robot is modeled as a disc with 6 massless legs
  Each leg can generate a force in any planar direction
  Robot has linear and rotational inertia

  Simple genome
  Each robot has 6 leg genes
  Each gene corresponds to a command neuron that responds to the

central pattern generator
  Total genome represents a command neuron at the level of “walk

forward,” “strafe,” or “turn in place.”
  Genetic algorithm

  Selection, breeding and mutation algorithms

  Uses a planar rigid body kinematics solver
  Solves for robot position and velocity given

genomes, using ode45
  Includes viscous drag intended to stop robot

motion within three periods of the Central
Pattern generator (CPG)
  -50 Ns/m linear drag
  -.0358 Nms/rad rotational drag

  Written in Matlab

  We needed a physical model that gave us
reasonable physical values to use in the
simulator

  We modeled the robot with the following
physical parameters
  1 kg steel disc
  87 mm x 22 mm

  Geometry was a function of desired weight

  9.66e-4 kg*m^3 rotational inertia
  Inertia was a function of geometry and density

  Robot legs have the ability to produce forces in a given
direction, whose amplitudes are linear functions of the
CPG

  The robot genome controls 5 parameters
  Leg force amplitude with respect to CPG
  Direction of force with respect to body
  Phase of leg force oscillation with respect to CPG phase
  Phase of leg liftoff with respect to CPG phase
  Duty cycle of leg liftoff with respect to CPG period

  Leg liftoff is a binary value; either the leg is producing
force with respect to the CPG, or it is “off the ground”
and unable to produce force
  This allows legs to produce net forces in single directions without

producing negative forces due to the CPG oscillation

  Our selection process first removes certain
unfit genomes from the potential pool
  Examples include genomes which move backwards

when instructed to move forwards

  The process then picks the top 20% of the
remaining pool and moves them into the next
iteration as-is

  Our breeding process fills the remaining spaces
in the iteration dockets with children of the
remaining genomes

  A random half of the parameters of one parent
are mixed half of the parameters of another
parent

  Mutations are then applied

  Our mutations happen within a restricted
range of potential values of the genome

  A point value mutation happens about once
per child

  Results are indicative of benefits and pitfalls of
genetic algorithms

  Results show that robots are improving, but are
getting caught in local optima

  Paths are also not as constrained as we’d like
them to be – optimizing for multiple variables
(orientation and translation, for instance) is
very hard

  Changing the selection, mutation, or breeding
algorithms is difficult, and not analytical

  Selection is difficult
  Deciding how many members to keep is hard

  Keeping few members speeds iterations
  Keeping more members maintains diversity

  Optimizing for multiple variables is also hard
  Fewer variables optimize well for those variables, but

other aspects are completely uncontrolled (i.e., it walks
forward but spins at the same time)

  More variables increases solution space, leading to
relative ineffectiveness of algorithm

  Escaping from local optima is difficult to do,
especially after several iterations

  This was an appropriately sized, interesting
project for two people, for four weeks

  We learned a lot about how genetic algorithms
work, what they’re good for, and what they’re
not good for

