EVOLVING BIOMIMETIC
PCONTROL SYSTEMS

' Gui Cavalcanti, Carl Herrmann
Computer Architecture, Fall 2008
12/18/2008

Proposal

[tbiological research suggests certain
1 s1mple neuronal architectures are responsible
or complex organism behaviors

'Such architectures lend themselves easily to
ophisticated control via genetic algorithms

therefore, we decided to implement genetic
algorithms on a simple simulated robot with a
biomimetic neuronal control system

mtial Research

Biomimetic Research:
Motor Neurons

are the closest
1eurons to muscle groups
along the neural path

ey directly or indirectly
trol one or more muscles
time
7 tend to control muscles
such a way as to
ividually command basic
a s such as “lift foot” (as
opposed to controllin
“twitch this one muscle”)

They are inherently analog,
with the command signal
sent to them being amplified
by them proportionally

Raise Foot Raise Foot Raise Foot

Biomimetic Research:
Motor Neurons

] Mu]tip]e motor Foot Forward Foot Forward
euron signals can be
uperimposed on the

Raise Foot Raise Foot

‘same muscle groups

perimposition leads
to complex motions

Biomimetic Research:
Command Neurons

neurons
- control multiple motor
neurons to generate
complex actions

Different amplitudes of Raise Foot Raise Foot
ontrol signal to command
eurons produces
lifferent sequences of
otor neuron action

Command neurons can
control other command
neurons, leading to
extremely complex actions

Step Forward Step Forward

Foot Forward Foot Forward

Biomimetic Research:
@entral Pattern Generators

Jattern generators are essentially an
J 1

* organism's “clock” signal, a sinusoidal wave of
a given frequency

“This sinusoidal pattern is selectively fed into
ommand neurons to generate reciprocating
etions such as walking

= Command neurons can be superimposed
= Walk sideways + Walk forwards = Walk diagonally

Computational Research:
Genetic Algorithms

G/ llgorithms that mimic evolutionary

. processes to produce improved function
performance given a set of parameters to modity
and an output metric to compare against

| hey include biological functions such as selection,
reeding and mutation.

1ey re used for optimization where analytical
understanding of a system is difficult

Require extensive computing power, but always
produce a “good” result, and always get “better”
with more computational power

Computational Research:
Genetic Algorithms

A genome is a term for parameters the genetic algorithm modifies, that are
inputs to the simulation

= [n any one iteration of a genetic algorithm, multiple genomes are run and
their performance is compared
>election

~ Simulations provide outputs given genome inputs to compare against a
selection metric, for each set of generated parameters

Selection algorithm then determines which genomes are “good” and which
are “bad”, and selects the top performers to continue forward

ceding
Good genomes live on to the next generation

Empty spaces in the iteration docket are filled with “children”, crossed
genomes of well-performing parents

= Mutations
= Some genome attributes are randomized within a restricted range

esbroject

Project Description

reate a robot model whose movement is
‘dictated by a set of simple motor neurons, and
evolve several command neurons that control
ple coordinated actions

‘roject Reguirements

| ulator
Wiritten in Matlab due to previous student experience and ease of

data display
= Planar world with high viscous drag

Simple robot model

s Robot is modeled as a disc with 6 massless legs
Each leg can generate a force in any planar direction
Robot has linear and rotational inertia

mple genome
“Each robot has 6 leg genes

Each %ene corresponds to a command neuron that responds to the
central pattern generator

Total genome represents a command neuron at the level of “walk
forward,” “strafe,” or “turn in place.”

= Genetic algorithm
= Selection, breeding and mutation algorithms

Simulation

a planar rigid body kinematics solver

2 Solves for robot position and velocity given
genomes, using ode45

"ncludes viscous drag intended to stop robot
otion within three periods of the Central
attern generator (CPG)

= -50 Ns/m linear drag
= -0358 Nms/rad rotational drag

= Written in Matlab

Robot Model

] ceded a physical model that gave us
~ reasonable physical values to use in the
simulator

We modeled the robot with the following

physical parameters

1 kg steel disc
= 837 mm x 22 mm
o Geometry was a function of desired weight

= 9.66e-4 kg*m”3 rotational inertia
o Inertia was a function of geometry and density

Robot Model

81 Mass Properties

Print... | Copy I Close | Options. .. I Recalculatel

Output coordinate system: | -- default - j
Hexapod Model,. SLDPRT

Selected items:

¥ Include hidden bodies{components
[V Show output coordinate system in corner of window

I Assigned mass properties

Density = 7900.000 kilograms per cubic meter
Mass = 1,021 kilograms

Volume = 129296.762 cubic millimeters
Surface area = 17834.036 milimeters~2

Center of mass: { millimeters)
X =0.000
¥ = 0.000
Z=0.000

Principal axes of inertia and principal moments of inertia: { kilograms * square millimeters)
Taken at the center of mass.

Ix = (0.000, 0,000, 1.000) Px = 523.474

Iy = (1.000, 0,000, 0.000) Py = 523.474

Iz = {0.000, 1,000, 0,000} Pz = 966,414

Moments of inertia: { kilograms * square millimeters)
Taken at the center of mass and aligned with the output coordinate system.

Lxx = 523,474 Lxy = 0.000 Lxz = 0.000
Lyx = 0.000 Lyy = 966.414 Lyz = 0.000
Lzx = 0.000 Lzy = 0.000 Lzz = 523.474

4

R0bot Model/Genome

| s have the ability to produce forces in a given
- direction, whose amplitudes are linear functions of the
CPG
I'he robot genome controls 5 parameters
Leg force amplitude with respect to CPG
= Direction of force with respect to body
Phase of leg force oscillation with respect to CPG phase
hase of leg liftoff with respect to CPG phase
= Duty cycle of leg liftoff with respect to CPG period

= Legliftoff is a binary value, either the leg is producing
force with respect to the CPG, or it is “oft the ground
and unable to produce force

= This allows legs to produce net forces in single directions without
producing negative forces due to the CPG oscillation

Genetic Algorithm:
Selection

] Our selection process first removes certain

unfit genomes from the potential pool
- Examples include genomes which move backwards
when instructed to move forwards

he process then picks the top 20% of the
remaining pool and moves them into the next
iteration as-is

Genetic Algorithm:
Breeding

Our breeding process fills the remaining spaces
in the iteration dockets with children of the
‘remaining genomes

A random half of the parameters of one parent
are mixed half of the parameters of another
parent

= Mutations are then applied

Genetic Algorithm:
Mutations

Our mutations happen within a restricted
‘range of potential values of the genome

point value mutation happens about once

pData: Forward Path

Path Progression of the Going Straight

Path 5
———— Path 10
Path 15
Path 20 ||
Path 25 ||
Path 30
Path 35
Path 40

Y (meters)

A (meters)

pData: Forward Path

Max Distance Forward as a Function of lterations

=3
W,
L)
=
(1
—
—
@
Q
c
e
-—
<
]
-—
[
@
m

20 25
lteration #

Data: Strafing

Path Progression of the Strafing

Path 5
——— Path 10
Path 15 [|
Path 20
Path 25
Path 30
Path 35
Path 40

-—
(8]

Y (meters)

-—

o
n

15
A (meters)

=
2D
[ri}
=
1]
-
—
@
o
c
]
—
4
]
-—
w
@
m

Data: Strafing

Max Distance Sideways as a Function of lterations

20
lteration #

Jata: lurning In Place

Path Progression of the Turning in Place

Y (meters)

Path 5

Path 10

Path 15

Path 20

Path 25
+ Path30
+ Path35
+ Path40

0.2 0.4 06
A (meters)

Jata: Turning In Place

Max Rotation as a Function of lterations

Best Rotation

20
lteration #

Data Reflections

1 Rest indicative of benefits and pitfalls of
- genetic algorithms

esults show that robots are improving, but are
‘getting caught in local optima

aths are also not as constrained as we’d like
lem to be - optimizing for multiple variables
(orientation and translation, for instance) is

very hard

= Changing the selection, mutation, or breeding
algorithms is difficult, and not analytical

Algorithm Reflections

difficult

= Deciding how many members to keep is hard
o Keeping few members speeds iterations
o Keeping more members maintains diversity

= Optimizing for multiple variables is also hard

a Fewer variables optimize well for those variables, but
~ other aspects are completely uncontrolled (i.e., it walks
~ forward but spins at the same time)

o More variables increases solution space, leading to
relative ineffectiveness of algorithm
= Escaping from local optima is difficult to do,
especially after several iterations

Project Reflections

This was an appropriately sized, interesting
project for two people, for four weeks

We learned a lot about how genetic algorithms
work, what they’'re good for, and what they’re
not good for

