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  Current biological research suggests certain 
simple neuronal architectures are responsible 
for complex organism behaviors 

  Such architectures lend themselves easily to 
sophisticated control via genetic algorithms 

  Therefore, we decided to implement genetic 
algorithms on a simple simulated robot with a 
biomimetic neuronal control system 





  Motor neurons are the closest 
neurons to muscle groups 
along the neural path 

  They directly or indirectly 
control one or more muscles 
at a time 

  They tend to control muscles 
in such a way as to 
individually command basic 
actions such as “lift foot” (as 
opposed to controlling 
“twitch this one muscle”) 

  They are inherently analog, 
with the command signal 
sent to them being amplified 
by them proportionally 

Raise Foot Raise Foot Raise Foot 



  Multiple motor 
neuron signals can be 
superimposed on the 
same muscle groups 

  Superimposition leads 
to complex motions 

Raise Foot 

Foot Forward 

Raise Foot 

Foot Forward 



  Command neurons 
control multiple motor 
neurons to generate 
complex actions 

  Different amplitudes of 
control signal to command 
neurons produces 
different sequences of 
motor neuron action 

  Command neurons can 
control other command 
neurons, leading to 
extremely complex actions 

Raise Foot Raise Foot 

Foot Forward Foot Forward 

Step Forward Step Forward 



  Central pattern generators are essentially an 
organism’s “clock” signal, a sinusoidal wave of 
a given frequency 

  This sinusoidal pattern is selectively fed into 
command neurons to generate reciprocating 
actions such as walking 

  Command neurons can be superimposed 
  Walk sideways + Walk forwards = Walk diagonally 



  GAs are algorithms that mimic evolutionary 
processes to produce improved function 
performance given a set of parameters to modify 
and an output metric to compare against 

  They include biological functions such as selection, 
breeding and mutation. 

  They’re used for optimization where analytical 
understanding of a system is difficult 

  Require extensive computing power, but always 
produce a “good” result, and always get “better” 
with more computational power 



  Genomes 
  A genome is a term for parameters the genetic algorithm modifies, that are 

inputs to the simulation 
  In any one iteration of a genetic algorithm, multiple genomes are run and 

their performance is compared 
  Selection 

  Simulations provide outputs given genome inputs to compare against a 
selection metric, for each set of generated parameters 

  Selection algorithm then determines which genomes are “good” and which 
are “bad”, and selects the top performers to continue forward 

  Breeding 
  Good genomes live on to the next generation 
  Empty spaces in the iteration docket are filled with “children”, crossed 

genomes of well-performing parents 
  Mutations 

  Some genome attributes are randomized within a restricted range 





  Create a robot model whose movement is 
dictated by a set of simple motor neurons, and 
evolve several command neurons that control 
simple coordinated actions 



  Simple simulator 
  Written in Matlab due to previous student experience and ease of 

data display 
  Planar world with high viscous drag 

  Simple robot model 
  Robot is modeled as a disc with 6 massless legs 
  Each leg can generate a force in any planar direction 
  Robot has linear and rotational inertia 

  Simple genome 
  Each robot has 6 leg genes 
  Each gene corresponds to a command neuron that responds to the 

central pattern generator 
  Total genome represents a command neuron at the level of “walk 

forward,” “strafe,” or “turn in place.” 
  Genetic algorithm 

  Selection, breeding and mutation algorithms 



  Uses a planar rigid body kinematics solver 
  Solves for robot position and velocity given 

genomes, using ode45 
  Includes viscous drag intended to stop robot 

motion within three periods of the Central 
Pattern generator (CPG) 
  -50 Ns/m linear drag 
  -.0358 Nms/rad rotational drag 

  Written in Matlab 



  We needed a physical model that gave us 
reasonable physical values to use in the 
simulator 

  We modeled the robot with the following 
physical parameters 
  1 kg steel disc 
  87 mm x 22 mm  

  Geometry was a function of desired weight 

  9.66e-4 kg*m^3 rotational inertia 
  Inertia was a function of geometry and density 





  Robot legs have the ability to produce forces in a given 
direction, whose amplitudes are linear functions  of the 
CPG 

  The robot genome controls 5 parameters 
  Leg force amplitude with respect to CPG 
  Direction of force with respect to body 
  Phase of leg force oscillation with respect to CPG phase 
  Phase of leg liftoff with respect to CPG phase 
  Duty cycle of leg liftoff with respect to CPG period 

  Leg liftoff is a binary value; either the leg is producing 
force with respect to the CPG, or it is “off the ground” 
and unable to produce force 
  This allows legs to produce net forces in single directions without 

producing negative forces due to the CPG oscillation 



  Our selection process first removes certain 
unfit genomes from the potential pool 
  Examples include genomes which move backwards 

when instructed to move forwards 

  The process then picks the top 20% of the 
remaining pool and moves them into the next 
iteration as-is 



  Our breeding process fills the remaining spaces 
in the iteration dockets with children of the 
remaining genomes 

  A random half of the parameters of one parent 
are mixed half of the parameters of another 
parent 

  Mutations are then applied 



  Our mutations happen within a restricted 
range of potential values of the genome 

  A point value mutation happens about once 
per child 

















  Results are indicative of benefits and pitfalls of 
genetic algorithms 

  Results show that robots are improving, but are 
getting caught in local optima 

  Paths are also not as constrained as we’d like 
them to be – optimizing for multiple variables 
(orientation and translation, for instance) is 
very hard 

  Changing the selection, mutation, or breeding 
algorithms is difficult, and not analytical 



  Selection is difficult 
  Deciding how many members to keep is hard 

  Keeping few members speeds iterations 
  Keeping more members maintains diversity 

  Optimizing for multiple variables is also hard 
  Fewer variables optimize well for those variables, but 

other aspects are completely uncontrolled (i.e., it walks 
forward but spins at the same time)   

  More variables increases solution space, leading to 
relative ineffectiveness of algorithm 

  Escaping from local optima is difficult to do, 
especially after several iterations 



  This was an appropriately sized, interesting  
project for two people, for four weeks 

  We learned a lot about how genetic algorithms 
work, what they’re good for, and what they’re 
not good for 


