
Gui Cavalcanti, Carl Herrmann
Computer Architecture, Fall 2008

12/18/2008

  Current biological research suggests certain
simple neuronal architectures are responsible
for complex organism behaviors

  Such architectures lend themselves easily to
sophisticated control via genetic algorithms

  Therefore, we decided to implement genetic
algorithms on a simple simulated robot with a
biomimetic neuronal control system

  Motor neurons are the closest
neurons to muscle groups
along the neural path

  They directly or indirectly
control one or more muscles
at a time

  They tend to control muscles
in such a way as to
individually command basic
actions such as “lift foot” (as
opposed to controlling
“twitch this one muscle”)

  They are inherently analog,
with the command signal
sent to them being amplified
by them proportionally

Raise Foot Raise Foot Raise Foot

  Multiple motor
neuron signals can be
superimposed on the
same muscle groups

  Superimposition leads
to complex motions

Raise Foot

Foot Forward

Raise Foot

Foot Forward

  Command neurons
control multiple motor
neurons to generate
complex actions

  Different amplitudes of
control signal to command
neurons produces
different sequences of
motor neuron action

  Command neurons can
control other command
neurons, leading to
extremely complex actions

Raise Foot Raise Foot

Foot Forward Foot Forward

Step Forward Step Forward

  Central pattern generators are essentially an
organism’s “clock” signal, a sinusoidal wave of
a given frequency

  This sinusoidal pattern is selectively fed into
command neurons to generate reciprocating
actions such as walking

  Command neurons can be superimposed
  Walk sideways + Walk forwards = Walk diagonally

  GAs are algorithms that mimic evolutionary
processes to produce improved function
performance given a set of parameters to modify
and an output metric to compare against

  They include biological functions such as selection,
breeding and mutation.

  They’re used for optimization where analytical
understanding of a system is difficult

  Require extensive computing power, but always
produce a “good” result, and always get “better”
with more computational power

  Genomes
  A genome is a term for parameters the genetic algorithm modifies, that are

inputs to the simulation
  In any one iteration of a genetic algorithm, multiple genomes are run and

their performance is compared
  Selection

  Simulations provide outputs given genome inputs to compare against a
selection metric, for each set of generated parameters

  Selection algorithm then determines which genomes are “good” and which
are “bad”, and selects the top performers to continue forward

  Breeding
  Good genomes live on to the next generation
  Empty spaces in the iteration docket are filled with “children”, crossed

genomes of well-performing parents
  Mutations

  Some genome attributes are randomized within a restricted range

  Create a robot model whose movement is
dictated by a set of simple motor neurons, and
evolve several command neurons that control
simple coordinated actions

  Simple simulator
  Written in Matlab due to previous student experience and ease of

data display
  Planar world with high viscous drag

  Simple robot model
  Robot is modeled as a disc with 6 massless legs
  Each leg can generate a force in any planar direction
  Robot has linear and rotational inertia

  Simple genome
  Each robot has 6 leg genes
  Each gene corresponds to a command neuron that responds to the

central pattern generator
  Total genome represents a command neuron at the level of “walk

forward,” “strafe,” or “turn in place.”
  Genetic algorithm

  Selection, breeding and mutation algorithms

  Uses a planar rigid body kinematics solver
  Solves for robot position and velocity given

genomes, using ode45
  Includes viscous drag intended to stop robot

motion within three periods of the Central
Pattern generator (CPG)
  -50 Ns/m linear drag
  -.0358 Nms/rad rotational drag

  Written in Matlab

  We needed a physical model that gave us
reasonable physical values to use in the
simulator

  We modeled the robot with the following
physical parameters
  1 kg steel disc
  87 mm x 22 mm

  Geometry was a function of desired weight

  9.66e-4 kg*m^3 rotational inertia
  Inertia was a function of geometry and density

  Robot legs have the ability to produce forces in a given
direction, whose amplitudes are linear functions of the
CPG

  The robot genome controls 5 parameters
  Leg force amplitude with respect to CPG
  Direction of force with respect to body
  Phase of leg force oscillation with respect to CPG phase
  Phase of leg liftoff with respect to CPG phase
  Duty cycle of leg liftoff with respect to CPG period

  Leg liftoff is a binary value; either the leg is producing
force with respect to the CPG, or it is “off the ground”
and unable to produce force
  This allows legs to produce net forces in single directions without

producing negative forces due to the CPG oscillation

  Our selection process first removes certain
unfit genomes from the potential pool
  Examples include genomes which move backwards

when instructed to move forwards

  The process then picks the top 20% of the
remaining pool and moves them into the next
iteration as-is

  Our breeding process fills the remaining spaces
in the iteration dockets with children of the
remaining genomes

  A random half of the parameters of one parent
are mixed half of the parameters of another
parent

  Mutations are then applied

  Our mutations happen within a restricted
range of potential values of the genome

  A point value mutation happens about once
per child

  Results are indicative of benefits and pitfalls of
genetic algorithms

  Results show that robots are improving, but are
getting caught in local optima

  Paths are also not as constrained as we’d like
them to be – optimizing for multiple variables
(orientation and translation, for instance) is
very hard

  Changing the selection, mutation, or breeding
algorithms is difficult, and not analytical

  Selection is difficult
  Deciding how many members to keep is hard

  Keeping few members speeds iterations
  Keeping more members maintains diversity

  Optimizing for multiple variables is also hard
  Fewer variables optimize well for those variables, but

other aspects are completely uncontrolled (i.e., it walks
forward but spins at the same time)

  More variables increases solution space, leading to
relative ineffectiveness of algorithm

  Escaping from local optima is difficult to do,
especially after several iterations

  This was an appropriately sized, interesting
project for two people, for four weeks

  We learned a lot about how genetic algorithms
work, what they’re good for, and what they’re
not good for

