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  Current biological research suggests certain 
simple neuronal architectures are responsible 
for complex organism behaviors 

  Such architectures lend themselves easily to 
sophisticated control via genetic algorithms 

  Therefore, we decided to implement genetic 
algorithms on a simple simulated robot with a 
biomimetic neuronal control system 





  Motor neurons are the closest 
neurons to muscle groups 
along the neural path 

  They directly or indirectly 
control one or more muscles 
at a time 

  They tend to control muscles 
in such a way as to 
individually command basic 
actions such as “lift foot” (as 
opposed to controlling 
“twitch this one muscle”) 

  They are inherently analog, 
with the command signal 
sent to them being amplified 
by them proportionally 

Raise Foot Raise Foot Raise Foot 



  Multiple motor 
neuron signals can be 
superimposed on the 
same muscle groups 

  Superimposition leads 
to complex motions 

Raise Foot 

Foot Forward 

Raise Foot 

Foot Forward 



  Command neurons 
control multiple motor 
neurons to generate 
complex actions 

  Different amplitudes of 
control signal to command 
neurons produces 
different sequences of 
motor neuron action 

  Command neurons can 
control other command 
neurons, leading to 
extremely complex actions 

Raise Foot Raise Foot 

Foot Forward Foot Forward 

Step Forward Step Forward 



  Central pattern generators are essentially an 
organism’s “clock” signal, a sinusoidal wave of 
a given frequency 

  This sinusoidal pattern is selectively fed into 
command neurons to generate reciprocating 
actions such as walking 

  Command neurons can be superimposed 
  Walk sideways + Walk forwards = Walk diagonally 



  GAs are algorithms that mimic evolutionary 
processes to produce improved function 
performance given a set of parameters to modify 
and an output metric to compare against 

  They include biological functions such as selection, 
breeding and mutation. 

  They’re used for optimization where analytical 
understanding of a system is difficult 

  Require extensive computing power, but always 
produce a “good” result, and always get “better” 
with more computational power 



  Genomes 
  A genome is a term for parameters the genetic algorithm modifies, that are 

inputs to the simulation 
  In any one iteration of a genetic algorithm, multiple genomes are run and 

their performance is compared 
  Selection 

  Simulations provide outputs given genome inputs to compare against a 
selection metric, for each set of generated parameters 

  Selection algorithm then determines which genomes are “good” and which 
are “bad”, and selects the top performers to continue forward 

  Breeding 
  Good genomes live on to the next generation 
  Empty spaces in the iteration docket are filled with “children”, crossed 

genomes of well-performing parents 
  Mutations 

  Some genome attributes are randomized within a restricted range 





  Create a robot model whose movement is 
dictated by a set of simple motor neurons, and 
evolve several command neurons that control 
simple coordinated actions 



  Simple simulator 
  Written in Matlab due to previous student experience and ease of 

data display 
  Planar world with high viscous drag 

  Simple robot model 
  Robot is modeled as a disc with 6 massless legs 
  Each leg can generate a force in any planar direction 
  Robot has linear and rotational inertia 

  Simple genome 
  Each robot has 6 leg genes 
  Each gene corresponds to a command neuron that responds to the 

central pattern generator 
  Total genome represents a command neuron at the level of “walk 

forward,” “strafe,” or “turn in place.” 
  Genetic algorithm 

  Selection, breeding and mutation algorithms 



  Uses a planar rigid body kinematics solver 
  Solves for robot position and velocity given 

genomes, using ode45 
  Includes viscous drag intended to stop robot 

motion within three periods of the Central 
Pattern generator (CPG) 
  -50 Ns/m linear drag 
  -.0358 Nms/rad rotational drag 

  Written in Matlab 



  We needed a physical model that gave us 
reasonable physical values to use in the 
simulator 

  We modeled the robot with the following 
physical parameters 
  1 kg steel disc 
  87 mm x 22 mm  

  Geometry was a function of desired weight 

  9.66e-4 kg*m^3 rotational inertia 
  Inertia was a function of geometry and density 





  Robot legs have the ability to produce forces in a given 
direction, whose amplitudes are linear functions  of the 
CPG 

  The robot genome controls 5 parameters 
  Leg force amplitude with respect to CPG 
  Direction of force with respect to body 
  Phase of leg force oscillation with respect to CPG phase 
  Phase of leg liftoff with respect to CPG phase 
  Duty cycle of leg liftoff with respect to CPG period 

  Leg liftoff is a binary value; either the leg is producing 
force with respect to the CPG, or it is “off the ground” 
and unable to produce force 
  This allows legs to produce net forces in single directions without 

producing negative forces due to the CPG oscillation 



  Our selection process first removes certain 
unfit genomes from the potential pool 
  Examples include genomes which move backwards 

when instructed to move forwards 

  The process then picks the top 20% of the 
remaining pool and moves them into the next 
iteration as-is 



  Our breeding process fills the remaining spaces 
in the iteration dockets with children of the 
remaining genomes 

  A random half of the parameters of one parent 
are mixed half of the parameters of another 
parent 

  Mutations are then applied 



  Our mutations happen within a restricted 
range of potential values of the genome 

  A point value mutation happens about once 
per child 

















  Results are indicative of benefits and pitfalls of 
genetic algorithms 

  Results show that robots are improving, but are 
getting caught in local optima 

  Paths are also not as constrained as we’d like 
them to be – optimizing for multiple variables 
(orientation and translation, for instance) is 
very hard 

  Changing the selection, mutation, or breeding 
algorithms is difficult, and not analytical 



  Selection is difficult 
  Deciding how many members to keep is hard 

  Keeping few members speeds iterations 
  Keeping more members maintains diversity 

  Optimizing for multiple variables is also hard 
  Fewer variables optimize well for those variables, but 

other aspects are completely uncontrolled (i.e., it walks 
forward but spins at the same time)   

  More variables increases solution space, leading to 
relative ineffectiveness of algorithm 

  Escaping from local optima is difficult to do, 
especially after several iterations 



  This was an appropriately sized, interesting  
project for two people, for four weeks 

  We learned a lot about how genetic algorithms 
work, what they’re good for, and what they’re 
not good for 


