
Franklin W. Olin College of Engineering

Proceedings of

CA 2004

the

Fall 2004 ENGR 3410
Computer Architecture Class

<ca@lists.olin.edu>

Needham, Massachusetts, December 2004

Contents

Preface
Mark L. Chang . ii

Digital Signal Processors
Grant R. Hutchins, Leighton M. Ige 2

FPGA Architecture, Algorithms, and Applications
Kathleen King, Sarah Zwicker . 7

A History of Nintendo Architecture
Jesus Fernandez, Steve Shannon 13

Graphical Processing Units: An Examination of Use and Function
Michael Crayton, Mike Foss, Dan Lindquist, Kevin Tostado . . . 17

Dual Core On-Chip Multiprocessors and the IBM Power5
Thomas C. Cecil . 24

Pong on a Xilinx Spartan3 Field Programmable Gate Array
Kate Cummings, Chris Murphy, Joy Poisel 28

The PowerPC Architecture: A Taxonomy, History, and Analysis
Alex Dorsk, Katie Rivard, Nick Zola 32

A Brief Introduction to Quantum Computation
Michael W. Curtis . 38

Beauty and the Beast: AltiVec and MMX Vector Processing Units
Drew Harry, Janet Tsai . 44

VLIW and Superscalar Processing
Sean Munson, Clara Cho . 49

i

Preface

The members of the Fall 2004 ENGR 3410 Computer Architecture class are
pleased to present the Proceedings of CA 2004. This is the first offering of the
class, and this document represents only a portion of the work done by the
students this semester. Presented here are the final papers describing their end
of semester projects.

The students were given a few weeks to research any Computer Architecture
topic that interested them. The deliverables included a brief in-class presenta-
tion as well as the documents compiled here. The goal of the project was to
encourage group learning of advanced Computer Architecture topics not covered
in class and give the students a chance to develop independent research skills.

The projects were wonderfully varied, ranging from literature reviews to
actual hardware implementations. It is important to note for the reader that
several students chose to complete an optional lab as part of the final project and
implemented a pipelined MIPS processor in Verilog. This work is not reflected
in these proceedings, however the scope of these students’ research projects were
adjusted accordingly.

As the instructor for CA 2004, I am most proud of the work accomplished
by the students this semester. I would like to thank them for their hard work
and their creative zeal. For more information regarding Computer Architec-
ture at F. W. Olin College of Engineering, please visit our class web page at
http://ca.ece.olin.edu.

Mark L. Chang
Assistant Professor
Franklin W. Olin College of Engineering

ii

Digital Signal Processors
Grant R. Hutchins, Leighton M. Ige

Abstract— Digital Signal Processors (DSPs) operate on digital
signals in realtime applications. They have several benefits
over other processor architectures, due to specialized designs
and instruction sets. This article offers an overview of general
properties of DSPs and comments on their applications in the
real world.

I. INTRODUCTION

We live in an analog world composed of continuous func-
tions: the light you see, the sound you hear, and the words you
speak. However, for many reasons these signals are converted
into digital representations for processing and transmission. It
is often cheaper, more accurate, and computationally simpler
to manipulate a digital representation of a continuous signal,
since there are discrete time slices of data to process instead
of a signal with infinite resolution. The power of the digital
revolution lies in the ability of digital systems to approximate
the analog world. Once in a discrete representation, signals
can be digitally processed to have different effects, such as
the reduction of background noise in a microphone feed or
the encryption and compression of a cell phone call.

Digital signal processors (DSP) are specific microprocessors
that specialize in the manipulation of signals in real time.
In the specific applications of devices that interface with the
world, live inputs must be sampled, processed, decoded, and
outputted on the fly. Thus, DSPs must be designed to be able
to complete a lot of computations very quickly to be effective.
The rate at which these DSPs operate must be at least as fast
as the rate of its input, otherwise backlogs will be created.
Once the process no longer proceeds in real time you lose the
synchronization between inputs and outputs, with the signal
becoming decoupled. This scenario can be likened to that of a
cell phone conversation in which you had to wait a long time
for your phone to decode the received audio signal from your
correspondent. When there is too long of a delay many of the
benefits of a synchronous conversation are lost and one would
be no worse off sending a written letter.

Today, by far, the largest implementation of DSPs is in
cell phones. Every cell phone sold contains a DSP, which
is necessary to perform all the encoding and decoding of
the audio signals which are transmitted through the wireless
communications network. Additionally, most new phones now
have advanced multimedia capabilities which need to be
processed in real time. These functions such as picture taking,
music playing, and video recording, along with their non-
integrated device counterparts, require DSPs for many fast
computations. DSPs can be found at the core of many of the
products in the growing multimedia device segment.

Within the audio domain, DSPs are rather prevalent and
can be found in CD players as well as high end home audio

components. Many audio receivers offer the capability of
real time equalization adjustments to audio playback. The
computationally intensive algorithms for transforming audio
to sound as if it is being played in a large concert hall or a
dance hall are handled by DSPs. Additionally, many filtering
and noise reduction algorithms can be implemented to clean
up audio signals. Convolution and Fast Fourier Transforms
require many sequential multiplications and additions, a pro-
cedure for which DSPs are optimized.

DSPs are also very flexible in their implementation as they
can be reprogrammed to perform different calculations. For
example, a cell phone provider could decide to support a new
data feature on its phones. The DSP could then be updated to
decode the new data packets being sent to the phone.

While there are currently many DSPs implemented in
everyday devices, they are becoming more prevalent due to
their high performance, flexibility, and continually decreasing
prices. The capability to perform complex manipulations on
data in real time can enable many systems to incorporate more
inputs from the world.

II. COMMON DSP TASKS

In digital signal processing, a few simple types of algorithms
dominate. Thus, DSPs highlight their abilities to perform
functions to

A. Multiply-Accumulate

Time domain filters are a common operation in digital signal
processing. Digital filters are implemented by taking streams
of current and prior input and output data, scaling them with
coefficients that perform a certain filter function, and summing
them to generate the next output.

Some filters have hundreds or thousands of coefficients.
Each of these multiplication operations must occur in order
to generate each output sample. However, data rates in audio
DSP applications are often as high as 96,000 samples per
second (video can go much higher), meaning that millions of
multiplications and accumulations must happen every second.
For this reason, DSPs are optimized for and benchmarked
on their ability to perform multiply-accumulate operations. A
common metric for DSP processors is MMACS, or millions
of multiply-accumulates per second.

B. Fast Fourier Transform (FFT)

In most situations, signal data is represented in the time
domain. That is, each separate word of signal data represents
a discrete sample of the signal in time. However, many
functions, such as equalization and pitch-shifting, operate on

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 2

Fig. 1. Typical architecture for a DSP (taken from[1])

the frequency domain, where each word represents the amount
of information present in the signal at a particular frequency.

The Fast Fourier Transform is an algorithm which takes
time domain data and converts it into corresponding frequency
domain data. In order to do so, the data must be reshuffled
and processed through multiple loops. Using a similar routine,
the Inverse Fast Fourier Transform converts frequency domain
data back into time domain data.

III. ARCHITECTURE AND DATAPATH

DSPs have several architectural properties that set them
apart from other classes of processors. Each optimization has
the common applications of DSPs in mind and aims to reduce
the overhead associated with manipulating large digital signals
in a repetitive fashion.

A. Memory

DSPs access memory in differing ways. Unlike traditional
microprocessors, some DSPs have two data buses and memory
files, which allows for better performance.

1) Von Neumann Architecture: The von Neumann archi-
tecture, named after the important mathematician John von
Neumann, contains a single memory bus connected to a single
processor. In this simple architecture, one memory file contains
both instructions and data.

The data bus in the von Neumann architecture is serial,
allowing only one value to be read from memory at a time.
Consider a simple multiply-add instruction, which involves
multiplying two values and adding them to a third value.
This instruction requires three separate fetches from memory,
namely the instruction, the two multiplication operands, and
the addition operand.

If the memory is clocked at the same speed as the main
processor, then this multiply-add example will necessarily take
at least four clock cycles to complete. Therefore, some DSP
chips use a modified von Neumann architecture in which clock
the memory at a multiple of the processor clock and thus allow
a single instruction to access multiple memory locations in one
clock cycle.

Fig. 2. Super Harvard Architecture (taken from [1])

2) Harvard Architecture: The Harvard architecture was
developed by a group led by Howard Aiken at Harvard Univer-
sity during the 1940s. The Harvard architecture employs two
separate memories, one for instructions and one for data. The
processor has independent buses, so that program instructions
and data can be fetched simultaneously.

Most DSPs use some sort of Harvard architecture. However,
most digital signal processing routines are data intensive
and thus require more than one load from data memory for
each load from instruction memory. The original Harvard
architecture does not support

3) Super Harvard Architecture (SHARC: Some products
from Analog Devices use what they call a “Super Harvard ar-
chitecture” (SHARC), such as their ADSP-2016x and ADSP-
211xx families of DSPs. The SHARC processors add an
instruction cache to the CPU and a dedicated I/O controller to
the data memory.

The SHARC instruction cache takes advantage of the fact
that digital signal processing routines make use of long repeti-
tive loops. Since the same instructions are performed over and
over, the instruction bus does not need to repeatedly access the
instruction memory. Cache hits will happen a vast majority of
the time, freeing the instruction bus to allow the CPU to read
an additional operand.

However, since the freed bus connects to instruction mem-
ory, the programmer must place one set of operand data in
instruction memory and the other in regular data memory. This
requirement adds complexity to the organization of DSP ap-
plication programs, but increases the throughput significantly.

The dedicated I/O controller connects directly to the data
memory, allowing signals to be written and read to RAM
directly at very high speeds without using the CPU. For
example, some of Analog Devices’s models have two serial
ports and six parallel ports which each operate on a 40
MHz clock. Using all six ports together gives data transfer
at 240 MHz, which is more than enough for most real-time
DSP applications and helps speed asynchronous processing.
Some processors also include analog-to-digital and digital-to-
analog converters, and thus can input and output analog signals
directly.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 3

Fig. 3. Circular buffer, before and after incrementing loop

B. Addressing

DSPs have some optimizations that allow them to read
memory more efficiently for digital signal processing tasks.

1) Circular Buffers: A circular buffer, shown in 3 is a
continuous section of memory that a DSP increments through
repeatedly, looping back to the first position after it accesses
the final position. DSPs often contain Data Address Generators
(DAGs) that can control multiple circular buffers. Each DAG
holds the memory location, size, and other information about
a particular circular buffer. In addition, a DAG can perform
logic on these variables such as loop incrementing. This logic
prevents applications from needing to tie up the processor with
instructions to perform math and branching in order to keep
repetitive loops running.

2) Bit-reversed Addresses: In addition to managing circular
buffers, DAGs can be switched into a special bit-reversed
mode in which the order of the address bits is inverted. Part of
the Fast Fourier Transform algorithm involves inverting the bit
order of the addresses which point to the data and then sorting
the resulting addresses. This process shuffles the addresses,
allowing the DSP to operate on the pieces of data in precisely
the order the FFT algorithm calls for.

C. Parallelism

DSPs are optimized to run several unrelated options all
at once. For instance, a DSP might allow a multiplier, an
arithmetic logic unit, and a shifter to run in parallel, each pro-
cessing a different value from a data register. For example, an
Analog Devices SHARP processor can perform a multiply, an
addition, two data moves, update two circular buffer pointers,
and perform loop control all in one clock cycle.

On traditional microprocessors each of these procedures
might take its own instruction. Instead of performing loop
logic after each iteration, a program could instead perform

a few initialization instructions which tell the DSP how to
automatically loop through the next set of instructions, which
for a typical loop might reduce the number of clock cycles by a
factor of ten or more from that of a traditional microprocessor.

D. Precision

Not all DSPs represent numerical values in the same way.
Depending on the application and certain trade-offs in perfor-
mance and price, one representation might make more sense
than another.

1) Fixed-point: The cheapest and most basic types of DSPs
perform operations on fixed-point numbers. At the most basic
level, all DSPs must be able to manipulate integers, in order
to process loops, access memory locations, and perform other
basic operations.

For fixed-point representation, DSPs often employ a “frac-
tional” notation in addition to the standard integer notation.
Fractional notation places all values between 0 and 1 for un-
signed fractions and -1 and 1 for signed fractions. For example,
a 16-bit unsigned fraction representation has 65,536 different
possible values, ranging evenly from 0 to 1. A fractional
notation is useful for multiply-accumulate operations, since
coefficients for finite impulse response and infinite impulse
response filters need to be less than 1 in order to prevent
excessive resonance.

2) Floating-point: For higher quality applications, DSPs
often employ floating-point representations. The most com-
mon format, ANSI/IEEE Std. 754-1985, has 32-bit words
and ranges from as high as ±3.4 × 10

38 and as low as
±1.2× 10

−38, a range that dwarves that of comparable fixed-
point representations.

However, since floating-point values often have twice as
many bits per word as fixed-point values, data buses must be
doubled in width. If memory is located off-chip, this translates
to many more pins, leading to more difficult board layouts.
Also, the larger size of words takes up more memory to
represent the same amount of data.

Another important feature of floating-point representation is
that the difference between two adjacent numbers is propor-
tional to their values. In 16-bit fixed-point fractional notation
two adjacent values might be separated by a difference as
low as one-tenth the value, as with 10

32,767
and 11

32,767
, for

example. In the standard 32-bit floating-point representation,
the difference between two adjacent numbers is set at about
ten-millionth times smaller than their value.

The higher resolution of floating-point values allows
for a higher signal-to-noise ratio. Since multiple multiply-
accumulate operations introduce rounding errors over time,
fixed-point representations have significant noise. Overall,
using a standard deviation method to measure noise, 32-bit
floating point outperforms 16-bit fixed-point by a factor of
about 3,000.

3) Extended precision: Consider a routine that involves
100 fixed-point multiply-accumulate instructions. Since each
instruction introduces a significant amount of noise, the final
result has accumulated 100 times the noise of each instruction.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 4

In order to prevent this situation, most DSP architectures have
intermediate fixed-point registers of much higher resolution.
For example, a 16-bit floating-point DSP might have a 40-bit
extended precision accumulator, only stepping the signal down
to 16-bit once the final value is ready to be written to memory.

IV. SPECIAL DSP INSTRUCTIONS

DSP processors have highly specialized instruction sets
which allow assemblers and assembly programmers to get
the best performance out of their architectures. Consider the
following examples found at [2] from the Lucent DSP32C
processor instruction set.

A. Parallel modification of address pointers

One common technique in DSP instructions is to manipulate
the value of registers acting as pointers to memory. This
manipulation occurs whenever the address of the register
appears in code, depending on how it is referenced. For
example, think of an assembly programmer implementing a
multiply-accumulate operation using a value from memory that
is pointed to by the register rP. The programmer can also tell
the processor to increment the register in the same instruction
by calling the register rP++ right in the assembly code. Unlike
in general purpose processors, the increment operator happens
immediately within another instruction rather than requiring
an instruction unto itself. A similar post-decrement can occur
after reading the value. The Lucent DSP32C can perform as
many as three of these pointer modifications, while performing
another function, all within one instruction.

B. Bit-reversed post-increment

A highly specific instruction found in the Lucent DSP32C
is the bit-reversed post-increment. Within one instruction, as
in the previous example, the processor can also increment
the pointer to the next value in an array as if the address
were in reverse order. This bit-reversed traversal of an array
only ever gets used for FFTs and inverse FFTs in practice.
Frequency domain operations are common enough in digital
signal processing that chip designers spend the extra hard work
to incorporate this highly specialized feature. With this special
instruction, DSPs can perform real-time FFT and frequency
domain functions, whereas most general purpose processors
might only be able to perform frequency domain operations
asynchronously.

C. Instruction length

Due to the number of operations that DSP processors
perform in parallel, some specialized designs have emerged.
Some processors with 32-bit instructions, for example, have
an option to run two 16-bit multiply-accumulate instructions
in one clock cycle. In addition, some DSPs have moved
toward a Very Long Instruction Word (VLIW), as big as 64
bits in width, to run several operations in parallel. A VLIW
instruction gives the programmer limited control over which
four 16-bit sub-instructions should run in parallel.

V. ADVANTAGES OF DSPS OVER OTHER PROCESSORS

Digital Signal Processors perform operations that focus
entirely on specific applications, such as MP3 decompression
or realtime video filters. However, DSPs are not the only
processors able to perform these tasks. Every day millions
of people listen to MP3s on their desktop computers, for
example. There are several alternatives to DSPs, each with
its own benefits and problems.

A. Field-Programmable Gate Arrays (FGPAs)

Field-Programmable Gate Arrays (FPGA) are logic chips
that can, as the name implies, be reprogrammed in the field to
have entirely different functionality. An FPGA is programmed
with a certain desired gate array and operates accordingly.
Thus it is very fast in that its implementation is customized
for the particular task at the gate level. It is essentially like
achieving custom silicon results without the hurdle of actually
manufacturing a unique chip. When the desired operation of
the FPGA changes, a new gate array can be written over the
chip.

An FPGA would seem to be a viable alternative to a DSP as
it could be customized for the same sorts of computationally
intensive tasks. While the FPGA would certainly be faster than
the DSP due to its dedicated logic, it is much more expensive
and requires more energy. Additionally, until recently many
FPGAs did not offer enough programmable gates to provide
the full functionality of a DSP. In an attempt to address this
deficiency, FPGAs are being manufactured with enhanced DSP
features to enable this capability. While the DSPs have a
significant price advantage at under at average of $6 per chip
[3], the added flexibility of a DSP-capable FPGA could justify
the additional expense.

B. Application-Specific Integrated Circuits (ASICs)

Application-Specific Integrated Circuits (ASIC) are essen-
tially customized silicon chips that are specifically configured
for a particular task. ASICs are very efficient in their execution
of tasks and utilize very dissipate very little power. However, a
big limitation to their utility is their lack of adaptability. DSPs
are a combination of hardware and software that allow the
operation and functionality of a chip to be constantly changed.
If new features or computations need to be completed, a
new software program can be loaded into the DSP on the
fly. If a change to an ASIC is desired, a new silicon chip
must be designed and manufactured. Thus there are large
financial and time impediments limiting the flexibility of ASIC
design. In a related application, DSP cores are sometimes used
within ASICs, creating custom DSP-based chips with specific
functionality.

C. Traditional processors

General-Purpose Multiprocessors (GPP) are optimized to
run entire systems, such as a desktop computer, and thus must
be able to complete many different tasks, most of which are
unnecessary for dedicated signal processing. They are large
chips that dissipate a lot of power. DSPs are optimized for the

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 5

completion of relatively few tasks many times in succession.
Thus their entire architecture is customized to this function-
ality and results in significant performance increases over
GPPs. For example, DSPs can complete multiple arithmetic
functions within a single cycle. In fact, current DSPs execute
up to eight operations within one clock cycle. Additionally,
customized addressing modes as well as parallel memory
access capabilities enhance the performance of a DSP. GPPs
are typically not well-suited for the computationally intensive
roles served by DSPs.

VI. GENERAL CITATIONS

Portions of this paper were inspired by [4], [5], [6], and [7].

REFERENCES

[1] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal
Processing. California Technical Publishing, 1997.

[2] (2004) Bores signal processing - introduction to dsp. [Online]. Available:
http://www.bores.com/courses/intro/

[3] (2001) Ee times: Dsps. [Online]. Available:
http://www.eetimes.com/story/OEG20010604S0057

[4] (2002) Comp.dsp faq: Dsp chips. [Online]. Available:
http://www.bdti.com/faq/3.htm

[5] Howstuffworks - inside a digital cell phone. [Online]. Available:
http://electronics.howstuffworks.com/inside-cell-phone.htm

[6] (2004) multimedia phones. [Online]. Available: http://www.1st-in-cell-
phones.com/21797-multimedia-phones.html

[7] (2004) Getting started : What is dsp? [Online]. Available:
http://dspvillage.ti.com/docs/catalog/dspplatform/details.jhtml?templateId=5121
&path=templatedata/cm/dspdetail/data/vil getstd whatis

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 6

FPGA Architecture, Algorithms, and Applications
Kathleen King and Sarah Zwicker

Franklin W. Olin College of Engineering
Needham, Massachusetts 02492

Email: {kathleen.king, sarah.zwicker}@students.olin.edu

Abstract— FPGAs are reconfigurable devices that have re-
ceived much attention for their ability to exploit parallelism in
algorithms to produce speedup. The reasons for their success
lie in the architecture of the FPGA, the algorithms involved in
programming FPGAs, and the type of the program being run on
the FPGA. This paper presents an overview of the development
of the current FPGA architecture, the algorithms that have been
developed to automate the process of programming FPGAs, and
the common reasons for speedup in applications.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) belong to the
family of reconfigurable devices. A reconfigurable device is a
piece of hardware that can be customized easily, often making
it faster than regular computer processors and more flexible
to change than hardwired circuits. Application-Specific In-
tegrated Circuits (ASICs) are hardwired circuits that can be
used to provide efficient solutions to very specific problems.
It is difficult and time consuming to design and produce
an ASIC, even though once the machinery is in place to
produce one, millions more can be made easily. They are
thus excellent solutions when mass production is required or
when execution speed is desirable at any cost. Processors,
on the other hand, are affordable and extremely flexible;
they can do many different jobs using the same hardware.
Unfortunately, processors are also much slower than ASICs
because they are not optimized for any particular task. Thus, it
is really unsurprising that reconfigurable devices like FPGAs
have become very popular in recent years; they fill the gap
between these two popular devices [1].

This paper attempts to explain to an audience of computer
architecture students what FPGAs are, why they have the
architecture they do and what they are good at. An overview of
FPGAs in the context of other reconfigurable devices is given
to provide context. Then, the advantages and disadvantages of
using various control technologies are considered. The FPGA
architecture section discusses the development of the current
4-LUT-based island-style architecture. Next, the process of
programming an FPGA is examined, including automated
software algorithms that have been developed. Finally some
current applications of FPGAs are explored.

II. RECONFIGURABLE DEVICES

Reconfigurable devices consist of arrays of gates connected
by a network of wires and switches. Opening or closing the
switches controls the behavior of the circuit. The simplest of
these devices is the Programmable Logic Array (PLA), which

Fig. 1. A Programmable Logic Array

can easily be used to emulate any truth table. PLAs connect
a set of inputs to an array of switches. These switches select
inputs and send them to various AND gates, whose outputs
can then be selected by another set of switches to be delivered
to a column of OR gates. A sample PLA is shown in Figure
1. A Programmable Array Logic (PAL) is sometimes defined
exactly the same as a PLA, but other times it is specified that
the outputs of a PAL may be connected back to the device as
inputs, which is not allowed in PLAs.

PLAs and PALs devices are the simplest type of reconfig-
urable devices. One step above these arrays is the Generic
Array Logic (GAL), which is similar to a PAL, except the
output of each OR gate of a GAL feeds directly into an output
logic macro cell. Each of these cells contains a D-flip-flop and
so has the option of acting as a state holding element.

All of the devices discussed thus far fall under the category
of Programmable Logic Devices (PLDs). While they may too
simple to be widely useful, they are extremely inexpensive
and easy to use so they are still commercially available and
quite common. However, for more complicated functions, none
of these simple pieces of logic are sufficient so Complex
Programmable Logic Devices (CPLDs) were developed. A
CPLD is a collection of PLDs along with a switch matrix,
which is a set of wires with programmable switches that give
the user greater flexibility, as shown in Figure 2.

However, CPLDs also have limited functionality, since the
switch matrix is not usually large enough to be capable
of connecting any two logic blocks. As more PLDs, wires,
and switches are added to the CPLD, it eventually becomes
an FPGA [2]. FPGAs can be used to replicate almost any
kind of hardware, including full processors, although not
every function takes advantage of the FPGAs unique abilities.
Applications of FPGAs will be discussed in a later section of

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 7

Fig. 2. A Complex Programmable Logic Device

this paper. First the architecture and programming of an FPGA
shall be considered.

III. FPGA CONTROL TECHNOLOGY

The function of the FPGA chip is programmed by control-
ling millions of switches. The technology chosen for these
switches has the potential to greatly enhance or detract from
the efficiency of the FPGA. One early switching method was
to use Erasable Programmable Read-Only Memory (EPROM).
EPROM, once programmed, remains so for up to twenty years,
unless it is exposed to intense ultraviolet light. It does not
require any power source to retain its programming. However,
it is significantly slower than other forms of memory, so it has
become obsolete in modern FPGAs.

The most common form of control in commercial FPGAs is
Static Random Access Memory (SRAM). SRAM is composed
of several transistors which form two inverters that have two
stable states, which correspond to 0 and 1. However, SRAM
requires a continuous power supply in order to retain its
state, although unlike dynamic RAM, which uses a capacitor
to maintain its value, SRAM does not need to be refreshed
periodically. The main advantages of SRAM are that it is
extremely fast and very easy to reprogram; when its power
is turned off, its memory is erased. Of course, these values
can be saved off-chip on a non-volatile type of memory and
reloaded when power is restored to the FPGA [4].

Antifuses are the other form of control still in use, although
they are far less common than SRAM. Antifuses have very
high resistance, so when they are placed between wires they
stop current from flowing, acting as an open switch. When
programming an antifuse-based FPGA, a high voltage is sent
through the antifuses that need to act as closed switches. This
causes the fuse to ”blow”, creating a low resistance path that
allows current to flow. One obvious disadvantage of antifuse
FPGAs is that they are not reprogrammable [4].

This may seem to defeat the entire purpose of an FPGA,
but they still fill a special niche in the market. First of
all, antifuse-based boards are faster even than SRAM, since
once they have been programmed the FPGAs are essentially
hardwired circuits; there are no switches to delay signals. Also,
while it may be necessary to pay $100 to replace an FPGA
board after one discovers that a mistake has been made in
its programming, $100 is far less than the millions of dollars

Fig. 3. An Island-Style FPGA Architecture

necessary to fabricate a new ASIC. Finally, and perhaps most
importantly, antifuses are not subject to damage from cosmic
rays. Cosmic rays are capable of interfering with transistors,
the building blocks of SRAM, which means that they can
cause an SRAM bit to suddenly change from a 0 to a 1, or
vice versa. Under normal circumstances, this is not a major
concern; SRAM FPGAs can be shielded, and on earth cosmic
ray interference is fairly uncommon. However, FPGAs are
often used in space, where heavy shielding is an unpractical
expense and there is no atmosphere to protect devices from
cosmic rays. Thus, antifuse FPGAs offer a fitting solution,
since cosmic rays have no effect on them.

However, despite the utility of antifuses in specialized
realms, SRAM FPGAs are almost universally used in terres-
trial applications. Therefore, throughout the remainder of this
paper it shall be assumed that SRAM is used for the switches
otherwise explicitly stated.

IV. FPGA ARCHITECTURE

Architecturally, the essential ingredients of FPGAs are logic
blocks and a routing network that connects the logic blocks.
The logic blocks may each contain some sort of PLD and
possibly some small amount of memory. They are laid out
in a regular pattern over the FPGA chip. This can be done
in a variety of ways, but the most common is an island style,
where islands of logic blocks float in a sea of routing wires and
switches, as shown in Figure 3. There are also other types of
islands in the sea, called connection blocks and switch blocks.
Switch blocks allow signals to be passed off onto different
wires. Connection blocks control what signals are sent in to
logic blocks as inputs and what signals are accepted as outputs.
These will be discussed in greater detail later [1].

First, logic blocks will be considered. The goal in designing
FPGAs is to use the minimum amount of area used by the logic
blocks while minimizing delays, thereby making the circuit
as fast and efficient as possible. Numerous studies have been
done, mostly in the early development of FPGAs, to determine
the optimal size of a logic block. Size, in this case, is talked
about as corresponding to the amount of work that the block
can do. The size of the logic blocks on a chip is described as
its granularity. Small blocks are said to be fine-grained, while

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 8

larger blocks are more coarse-grained. Some extremely fine-
grained logic blocks used in early FPGAs contained as little
as several transistors, while extremely coarse-grained blocks
might have all the functionality of a full ALU. FPGAs that
are homogeneous with only one extreme grain size are now
obsolete. Fine-grained logic blocks require too many wires and
switches and routing is a primary cause of delay in FPGAs.
Exceedingly coarse-grained blocks lead to faster FPGAs on
some occasions, but they minimize the overall flexibility of
the device [4].

Thus, logic block sizes falling somewhere between these ex-
tremes were destined to become the popular choice. Medium-
grained logic blocks can be based on one of three ideas. The
blocks could contain arrays of simple gates, making them
virtually identical to PALs or GALs. These blocks have a great
deal of flexibility, but it is difficult to take full advantage of
all the available gates, so this design for a logic block ends up
wasting significant amounts of space. Multiplexers and Look-
Up Tables (LUTs) offer other possible solutions [4].

A LUT is in essence a piece of SRAM. The inputs to a
LUT give the address where the desired value is stored. For
a particular boolean function, a LUT can be made by storing
the correct outputs in the slots to which the inputs point. Thus,
LUTs can output in a single step for any number of inputs,
while multiplexers require log2(n) steps for an n-input func-
tion. Clearly, LUTs work more efficiently than multiplexers.
Therefore current logic blocks are based on LUTs in order to
minimize delay and avoid wasting space. LUTs may have any
number of inputs, leading to logic blocks of anywhere from
medium to very coarse granularity. The optimum size of logic
blocks has been determined experimentally. One particularly
important paper was [5], which will now be reviewed briefly.

Logic blocks with one input and some number, K, outputs
were tested on various benchmark circuits implemented on
FPGAs. Figures 4, 5, and 6 show the results of these ex-
periments for various numbers of inputs, assuming different
switch delays, τs. Recall that switch delays are the result
of switch choice; that is, whether control is performed with
SRAM, antifuses, or EPROM determines the switch delay.
Since modern FPGAs almost universally use SRAM, this
element of the results presented is obsolete.

Figure 4 shows that if blocks with more inputs are used,
then a smaller total number blocks is necessary, with a sharp
decrease until K = 4 and flattening after that point. However,
Figure 5 shows that blocks with more inputs have significantly
greater associated delay per block, which is to be expected
since more inputs require more routing. Figure 6 surprisingly
shows that the total path delay per block had a local or absolute
minimum at K = 4. Thus, [5] concludes that 4, or possibly
5, input logic blocks are optimal for performance.

One may get a sense from this research, which shows that
4-input logic blocks are preferable, and the discussion above,
in which it was decided that logic blocks based on LUTs are
optimal, that 4-LUTs are the best choice for LUTs. Others
have done more research and confirmed that 4-LUTs are
indeed best for optimizing both speed and area of FPGAs, as is

Fig. 4. Number of Logic Blocks, for Blocks with K Inputs

Fig. 5. Delay per Block, for Blocks with K Inputs

discussed in [4]. In fact, 4-LUTs remain the industry standard
for FPGAs, although it is no longer universally accepted that
4-inputs are ideal for every logic block.

More recent papers, such as [6], have discovered that
sometimes grouping several connected 4-LUTs into a single
logic block minimizes delays and area. The idea behind [6] is
that hardwired connections eliminate switches, which take up
space and delay signals. Through experimentation similar to
[5], it was discovered hardwiring four 4-LUTs in a particular
tree structure maximizes the efficiency of a logic block.

Of course, logic blocks are not the only part of an FPGA
which may be improved. In fact, most modern research is
directed toward optimizing the routing of wires between logic

Fig. 6. Total Path Delay, for Blocks with K Inputs

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 9

blocks. Since only ten percent of an FPGA’s area is used for
logic while ninety percent is used for routing, this focus is not
surprising [1]. Since routing also has the potential to cause a
great deal of delay, many people work on trying to find ways
to place wires efficiently to minimize both area and delay. The
research done in [6] addressed this problem by attempting to
determine the best lengths of wires. Adding switches to the
network of wires allows for greater flexibility, but switches
cause delays and take up space. However, while long wires
are faster, if they are not necessary then they waste area. In
[6], it was determined that it is preferable to have 56 percent
of wires be short, 25 percent medium, and 19 percent long.

The routing research example describes a very high-level
architectural decision. However, knowing that architectural
features of FPGAs is only a starting point. To actually im-
plement a circuit on an FPGA requires that the logic blocks
be arranged on the board and connected with wires. These
tasks are extremely difficult to perform, and currently much
research is being done to determine the best methods of doing
them. The next sections of this paper shall present common
algorithms used in implementing programs on FPGAs.

V. SOFTWARE

There are currently many automatic software solutions
capable of taking high level code, designing the corresponding
logic blocks and wiring scheme, for downloading to an FPGA.
The following section discusses the process by which software
algorithms perform these tasks. First, it is necessary to have
code that describes a list of connections between logic gates
in a low-level language like Verilog. The automated process
begins with the technology mapping of the designer’s code.
The technology mapping process takes the code and translates
it into a netlist of logic blocks specific to the FPGA. Often
circuit libraries, which contain the logic-block-based structures
of commonly used elements, such as adders and multipliers are
used to facilitate this process. Also at this stage, if the system
contains more than one FPGA, the netlist is partitioned into
the parts that will go on each FPGA.

Next, a placement algorithm is used to assign the netlist of
logic blocs to specific locations on the FPGA. Floorplanning,
or the grouping of highly connected logic blocks into particular
regions on the FPGA, can help the placement algorithm to
achieve a reasonable solution. Often the placement algorithm
is based on simulated annealing, a heuristic process that can be
run until a desired goal is reached. The goal of the placement
algorithm is closely tied to the next step in the automated
process, which is routing. Better placement means that wires
will need to be routed through fewer connections, or switches,
making the circuit run faster.

After placement is complete, the layout and netlist are used
to route the wires, or signals, through the FPGA. Routing is
limited by the fact that there is a specific number of wires that
can be connected to each logic block and that can run in the
channels between the logic block islands of the FPGA. Thus,
the routing algorithms have to work within that constraint to
find a good scheme. Routing has the most direct affect on

the performance of the circuit; if there were inefficiencies in
earlier processes, they increase delays in routing. Once routing
is complete, a translation of the logic block and connection
layout information can be easily created and downloaded onto
the FPGA.

In the early days of FPGAs, placement and routing were
done by hand, as was the individually programming each
LUT and multiplexer. Manual circuit description is a time-
consuming process and requires low-level customization for
specific architectures. It can produce high-quality circuits in
terms of algorithm speedups and exploited parallelism. How-
ever, as the FPGA has grown in number of logic blocks and
routing wires, it has become increasingly convenient to have
automated design tools available to do mapping, placement
and routing.

A. Technology Mapping

Technology mapping converts code into circuit components
based on the architecture of the logic blocks in the FPGA.
If the code is high level like Java or C, it will need to be
processed into a netlist. However, if it is low level such as
Verilog or VHDL, it can be run through a technology map
algorithm directly. As an example of technology mapping, if
the FPGA hardware was composed of logic blocks containing
4-LUTs, some logic functions in the code that had more
than 4 inputs would have to be spread over multiple logic
blocks. Technology mapping algorithms can try to minimize
the number of logic blocks used or optimize for routeability.
Routing is made more complex by the increasing heterogeneity
of commercial FPGAs, meaning that they involve a variety of
sizes and types of logic blocks.

Because each FPGA may have different types of logic
blocks arrayed in unique layouts, it has become the standard
for FPGA manufacturers to offer circuit libraries. Circuit
libraries incorporate low level details into an abstraction of
common components such as adders and multipliers. In this
way, common components can be designed and optimized
by those who have specialized knowledge of their specific
FPGA architecture. The FPGA can then be programmed from
a higher level. The abstractions of these tools are generally
architecture independent so that once a user learns how to
program one FPGA, he does not need to spend time learning
how to use the tools for another type.

Technology mapping can include more than one FPGA,
in which case the netlist must first undergo a process called
partitioning. Manual partitioning of pieces of the netlist can
yeild highly optimized layouts. However, it is sometimes
time consuming and complex. To address this problem, [7]
discusses a method for automatically partitioning netlists for
a variety of FPGA architectures. The best partitions have the
fewest interconnections that have to run between different
FPGAs. Finding the best partition is the NP-hard mincut
problem. The algorithm presented in [7] attempts to solve the
mincut problem heuristically.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 10

B. Placement

After the logic blocks and their connections have been
mapped, the logic blocks are placed on the FPGA board.
Placement has also been shown to be an NP-hard problem.
An intermediate step that can facilitate the placement process
is a global placement or floorplanning. The floorplanning
algorithm groups highly-connected components into clusters
of logic cells and places these onto bounded regions of the
FPGA board [1]. Also, macros, or repeated data paths, in
circuits can be laid out as single units in their own regions.
The placement algorithms can then be used to configure logic
blocks within each region.

The most common placement algorithm is based on a
simulated annealing as described in [8]. The metallurgical
definition of annealing involves heating up a material, usually
a metal, to allow the atoms to move. The atoms are capable
of moving greater distances at higher temperatures. At higher
energy states, dislocations begin to disappear and grains begin
to grow, giving the desired effect of making the material more
ductile. In simulated annealing, an initial placement of ’atoms’
(in this case logic blocks) is chosen and modified through
repeated cycles until an acceptable solution is reached. The
cycles begin with a ’high energy state,’ in which random
logic blocks are allowed to swap places. For each potential
switch, a cost function is used to estimate how good or bad
this swap will be. As each cycle progresses, the threshold is
raised for how good a swap has to be in order to be allowed.
The annealing technique helps avoid local minima (as often
occur in a greedy algorithm) by sometimes allowing swaps that
do not have good cost values. Just as the cooling schedule is
important in determining the ductility of a metal, the cooling
schedule of the simulated annealing cycle is an important
factor in the success of the algorithm at obtaining a good
placement. Therefore, the annealing procedure is often time-
consuming, on the order of hours [10].

Also important to the simulated annealing algorithm is the
accuracy of the cost function in determining good choices.
At this point, it can only be estimated how the logic blocks
will be routed, and the estimates have to be decided quickly.
One of the challenges of automating FPGA programming is
that placement and routing are both NP hard problems. Thus,
it is not surprising that a good algorithm that considers both
problems at once has not yet been found. The flexibility of
the resources of the board is also important. If too much of
the board is in use, the algorithm may not be able to find an
acceptable solution. The factors that affect flexibility include
the architecture of the FPGA and the amount of the board that
is in use.

C. Routing

Once placement of the logic blocks has been done, routing
will determine which wires and switches, or nodes, to use for
each signal. FPGA routing is fundamentally different from
ASIC routing because the wires and connection points are
limited, which means that global and local routing need to be
done simultaneously. This and other distinctions make research

done on ASIC routing of little use in helping to determine
FPGA routing. The basic routing problem tries to minimize
path length by minimizing the use of routing resources, while
simultaneously trying to minimize delay. However, minimizing
delay often requires taking longer but less congested paths.

One approach to minimizing delay is to attempt the routing
of the entire FPGA and then search for areas that are not
optimal. At these areas, ’rip-up and retry;’ that is, remove all
of the wires and try to find a better local routing. The success
of this method is highly order dependent: if the program
does not start with a good node to optimize from, it will get
stuck in a local minimum. Many software applications use the
PathFinder, which is an iterative algorithm that allows signals
to pick their preferred path and then negotiate with other
signals for resources. During the first iteration, the signals
are treated as independent with each node only costing its
intrinsic delay. During subsequent iterations, the history of
congestion is added into the cost of each node. This cost is
multiplied by the number of signals using the node. Thus,
signals that are sharing the same node in the most direct path
gradually decide to use less congested nodes. Also, because
of the history term, the cost of using congested nodes is
permanently increased so paths that move off of congested
nodes do not try to return. If the history term does not exceed
the intrinsic delay, then the algorithm that PathFinder uses
for negotiating congestion and delay routing has been proven
to achieve the fastest implementation for the placement. In
practice, the history term will exceed the intrinsic delay for
very congested circuits, but even then, results are close to
optimal [11].

All of these software algorithms facilitate the generation
of efficient designs in a shorter time span than it would
take to hand-map the program onto a modern FPGA. It is
now possible to implement specific applications and utilize
the qualities of the FPGA to achieve speedup on common
programs.

VI. APPLICATIONS

In general, FPGAs are good at applications that involve
rapid prototyping of circuits, algorithm acceleration, and mul-
tiple processors, when the FPGA works alongside a CPU.
Image processing is generally a good candidate for FPGAs
because of the high level of fine-grain parallelism they can
support. The ability of FPGAs to act as coprocessors makes
them desirable for use in satellites. FPGAs can perform such
functions as image compression for the CPU and also serve
as a backup in case of problems.

One example of an application that took advantage of the
computing power of FPGAs is a genetic algorithm used to
solve the traveling salesman problem in [12]. Using a system
of four FPGAs, an execution time speedup factor of four
was achieved, compared to a software implementation of the
same problem. Fine-grain parallelism accounted for more than
a 38X overall speedup factor. Hard-wired control intrinsic
to the FPGA hardware accounted for an overall speedup

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 11

factor of 3X. There was also some speedup due to coarse-
grain parallelism and random number generation. Parallelism
in FPGAs often accounts for their speedup over software
algorithms; however the algorithm used in this case was not
”embarrassingly parallel” as are some hardware design, which
showed that FPGAs are valuable beyond their parallelism.

Many applications of FPGAs for algorithm acceleration
have been found in the field of cryptography. For example,
a certain process called sieving is used to factoring large
numbers in the fastest published algorithms for breaking the
public key cryptosystem designed by Rivest, Shamir and
Adleman (RSA). [13] used an FPGA system to get a speedup
of over 28X compared to the more traditional UltraSPARC
Workstation running at 16 MHz. They estimate that an upgrade
to FPGAs using 8ns SRAM will give a speedup factor of 160.
If this change were made, theoretically the only two months
would be required to break RSA-129 (the RSA encryption
using 129 digit primes).

VII. SUMMARY

This paper has attempted to present an overview of FPGAs
at a level accessible to undergraduate engineering students. It
has discussed where FPGAs fit into the family of reconfig-
urable devices and explained why SRAM is most commonly
used in FPGA switches. The common island style architecture
has been examined and the tradeoffs between space for logic
blocks and routing considered. The development of 4-LUTs
as the prominent element in logic blocks was discussed.
Algorithms that perform mapping, placement, and routing
on FPGAs were explained. Finally some applications that
have witnessed significant speedup due to FPGA use were
discussed, along with the reasons for the speedup. Thus, this
paper has given a broad survey of the architecture, algorithms,
and applications of FPGAs.

ACKNOWLEDGMENT

The authors would like to thank Mark Chang for his
extensive help with the research for this paper. The authors
would also like thank Sean Munson and Clara Cho for their
generous commitment of time and camaraderie.

REFERENCES

[1] K. Compton and S. Hauck, “Reconfigurable Computing: A Survey of
Systems and Software,” ACM Computing Surveys, vol. 34, no. 2, June
2002, pp. 171-210.

[2] M. Barr, “How Programmable Logic Workds,” Netrino Publications, url:
http://www.netrino.com/Articles/ProgrammableLogic, 1999.

[3] B. Arbaugh and M. Hugue, Programmable Logic array, Computer
Organization Notes, Dept. Comp. Sci., Univ. Maryland, url:
http://www.cs.umd.edu/class/spring2003/cmsc311/Notes/Comb/pla.html
2003.

[4] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, “Architecture of
Field-Programmable Gate Arrays,” Proc. of the IEEE, vol. 81, no. 7, July
1993, pp. 1013-1029.

[5] J. L. Kouloheris and A. El Gamal, “FPGA Performance versus Cell
Granularity,” Proc. Custom Integrated Circuits Conference, 1991, pp
6.2.1-6.2.4.

[6] P. Chow, S. O. Seo, J. Rose, K. Chung, G. Páez-Monzón, and I. Rahardja,
“The Design of an SRAM-Based Field-Programmable Gate Array - Part
I: Architecture,” IEEE Transactions On Very Large Scale Integration
Systems, vol. 7, no. 2, June 1999, pp. 191-197.

[7] U. Ober and M. Glesner, Multiway Netlist Partitioning onto FPGA-based
Board Architectures, IEEE Proc. Conf. on European Design Automation,
1995.

[8] S. Kirkpatrick, C. D. Gelatt, and M. P. Vechi, “Optimization by Simulated
Annealing,” Science, vol. 220, no. 4598, May 1983.

[9] M. L. Chang, Variable Precision Analysis for FPGA Synthesis, Ph.D.
Dissertation, Dept. Elect. Eng., Univ. Washington, 2004.

[10] S. Hauck, Multi-FPGA Systems, Ph.D. Dissertation, Dept. Comp. Sci.
and Eng., Univ. Washington, Sept. 1995, pp. 36-42.

[11] L. McMurchie and C. Ebeling, “PathFinder: A Negotiation-Based
Performance-Driven Router for FPGAs,” ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays, 1995, pp. 111-117.

[12] P. Graham and B. Nelson, “Genetic Algorithms in Software and in
Hardware - a Performance Analysis of Workstation and Custom Comput-
ing Machine Implementations,” IEEE Symposium on FPGAs for Custom
Computing Machines, 1996.

[13] H. J. Kim and W. H. Mangione-Smith, “Factoring Large Numbers with
Programmable Hardware,” ACM/SIGDA Int’l. Symp. on FPGAs, 2000.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 12

Abstract— The video game industry shakedown of 1983

seemed to be the end of the industry in the States. In spite of this,
it is at this time that Nintendo released the NES as an
astronomical success for the company. The architectures of the
NES, SNES and N64 systems are not only influenced by the
ambitions of Nintendo’s engineers, but also from external
circumstances like economic climate, business partnerships, and
marketing.

Index Terms— Nintendo, NES, SNES, N64, Computer
Architecture, Console Design

I. INTRODUCTION

HE year is 1983. Atari has declared bankruptcy after
reporting a loss of over $500 million from the failed
releases of E.T. and Pacman for the Atari 2600. The

economy itself is in a slump. The bottom has fallen out of the
video game market, and the public as a whole has all but
renounced the console system in favor of the emerging
personal computer. From this description, one would think
that introducing another new console only two years later
would be the quickest form of corporate suicide. However,
that’s just what Hiroshi Yamauchi, Masayuki Uemura, and the
engineers of Nintendo did, and through a series of intelligent
marketing and business decisions, the “big N” single-handedly
revitalized and redefined the video game industry as they saw
fit.

Not surprisingly, the decisions that led to the success of
Nintendo’s first mass-market system played a direct role in
how the system’s infrastructure was designed. Then, as the
industry grew back steadily and the pertaining technology
caught on, competitors immerged once more. Nintendo had to
keep evolving with the market in order to stay competitive,
which meant updating its design and system capabilities. In
addition, Nintendo’s constant desire to push the limit of the
industry and be the innovator had significant impact on the
infrastructure as years went on.

II. NINTENDO ENTERTAINMENT SYSTEM

The Nintendo Entertainment System (NES) – known as the
Famicom in Japan – was first envisioned by Yamauchi to be a
16-bit console selling at a street price of $75 dollars. The goal

was clear: to develop an inexpensive system that would be
better than its competitors’ offerings. While Yamauchi was
able to secure some fairly advantageous deals with
semiconductor companies and distributors, many decisions
had to be made to cut costs in the system’s design. Many
desired “extras” like keyboards and modems were dropped
completely despite being implemented in the hardware itself.
[1]

Later on, the video game industry shakedown of 1983 also
had an effect on the design of the system Nintendo would
release in the US. Most noticeably, the look and feel of the
system was changed so that it would not remind consumers of
other home consoles which had fallen out of style in the
States. More importantly –however – was the development of
a “Lockout” circuit that prevented the running of unlicensed
code, giving Nintendo control of the distribution of games on
its console. This measure would prevent any future
oversaturation of the video game market for the Nintendo
console.

The Nintendo Entertainment System was released in the US in
1985 at a price of approximately $200 with the following
technical specifications:

• 2A03 CPU – a Modified MOS 6502 8-bit processor
with 5 sound channels and a DMA controller on-chip
clocked at ~1.79Mhz

• 2C02 PPU – Picture Processing Unit
• Main RAM: 2KB
• Video memory: PPU contains 2 KB of tile and

attribute RAM, 256 bytes of sprite position RAM
("OAM"), and 28 bytes of palette RAM

From these specifications it is possible to see where
Nintendo’s engineers were able to cut costs within the design
of the system. The MOS 6502 was not only less expensive
than other processors at the time, but it also outperformed
them. Integrating the MOS 6502 and a sound generating unit
into the 2A03 made it so that there would need to be fewer
independent components on the NES’ mainboard to manage
using costly “glue logic”.

A History of Nintendo Architecture
Jesus Fernandez, Steve Shannon

T

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 13

The MOS 6502 is an 8-bit pipelined processor with a 16-bit
address bus and an 8-bit two-way data bus. It also had an 8-
bit ALU as well as the following internal registers:

• Two 8-bit index registers (X and Y)
• One 8-bit stack pointer register (SP)
• One 8-bit accumulator index (A)
• One 16-bit program counter register (PC)
• One 8-bit processor status register (SR)

There were no internal data registers, since it was optimized
for RAM access – which at the time, was much faster than the
CPU. [2]

Each of the MOS 6502’s instructions makes use of one of 13
addressing modes that effectively used each of the internal
data registers on the chip. Since the 16-bit address bus is split
into two 8-bit buses, these addressing modes make it easy to
traverse different “pages” – defined by the high 8 bits – of
memory each representing a different 8-bit address space.

There are a set of addressing modes that implicitly direct to
the 0th page of memory, which in most MOS 6502 programs
becomes a sort of register.

Nintendo made some modifications to the MOS 6502 in
creating the 2A03. The MOS 6502’s decimal mode was
disabled in the 2A03. Additional features connected to the
CPU through specific addresses, giving it access to the sound
hardware on the 2A03, the 2C03’s VRAM, the ROM and
RAM on the cartridge, joysticks and other hardware.

The 2C02 was a Picture Processing Unit capable of producing
256x240 color video signals on a television set one scan-line
at a time. It has a palette of 48 colors and 5 shades of grey, but
only 25 would be visible on a given scan-line at a time.
Additional colors could be “created” by the PPU’s ability to
dim the red, green, or blue value on any given scan-line. The
CPU would write to the PPU’s VRAM during “Blanks”,
periods of time during which it was guaranteed that the PPU
would not be accessing its VRAM.

Fig 1. The MOS 6502. [3]

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 14

In the NES, it was responsible for drawing the playfield as
well as the interactive objects in the screen. Additionally it
was capable of detecting collisions between objects in the
image and report those back to the CPU. Images were drawn
on the screen in 8x8 or 8x16 blocks using colors defined in 4-
color palettes all defined in cartridge ROM.
The PPU was capable of 4-directional scrolling. Advanced
techniques such as parallax scrolling and split-screen scrolling
could be done on the NES but it requires cycle-timed code and
accesses to the PPU VRAM outside of the Blank period to
implement.

III. SUPER NES
The wild success of the NES made it practically the only
choice for home video gaming, completely marginalizing
competing consoles, and Nintendo’s licensing practices –
while almost draconian in the degree of oversight the
company had over its third-party publishes – still managed to
exclusively secure the best programming talent of the day.
That is until new competition arrived in the form of the Sega
Genesis in 1988. While not interested in developing a new
console to compete with the Genesis, it became evident that
Nintendo had to act to be able to compete with the Genesis’
superior technology.

Their response was the Super NES (SNES), released in 1990,
essentially an evolution of the NES architecture, the SNES
was considered at the time to be nearly flawless, boasting a
slick new graphics chip, a Sony-designed proprietary sound
chip, and several hardware modes that allowed for complex
manipulations of sprites to simulate 3D graphics. Indeed, the
only qualms that many had with the SNES was that it had a
rather sluggish main CPU. However, when push came to
shove, the SNES was able to outperform the Genesis in almost
every way, and it was indicated that the SNES had outsold the
Genesis by about one million units by 1996.

The controversial CPU was the MOS 65c816, a 16-bit version
of the MOS 6502 found in the NES. It was able to run in an
8-bit emulation mode as well as the 16-bit native mode,
making it almost 100% compatible with the 6502, but it was
clocked at an unimpressive 2.68-3.58 MHz (compared to the
7.61 MHz M68000 processor running in the Genesis).
Though Nintendo later found ways to get around this crater by
incorporating additional chips into the game cartridges
themselves, the real stars of the show were the graphics and
sound co-processors, providing the power and performance
that tipped the market scales in Nintendo’s favor.

The graphics chip had several different hardware modes built-
in that performed complex calculations automatically:

• Rotation: On the NES, in order to perform a smooth
rotation on a sprite you had to construct an animation
consisting of a large number of frames. The more
frames used, the smoother the rotation appeared, but
also the more memory required to store the costly

animation. The Rotation Mode on the SNES
graphics chip allowed it to rotate sprites on the fly in
realtime without any need for animation frames.

• Scaling: Resizing sprites on the NES also
necessitated the use of a multi-frame animation being
stored in memory. The Scaling Mode did all the
scaling animation in realtime, allowing games to
simulate the “nearness” and “farness” of 3D
distances in a 2D environment.

• Transparency: An effect not even conceptualized for
the NES, the Transparency Mode could make sprites
and backgrounds appear transparent or translucent,
allowing for amazing new elemental effects like
water, fire, smoke, and fog.

• Mode 7: The most famous of the SNES hardware
modes, the evolutionary Mode 7 made it possible to
scale and rotate large backgrounds to simulate 3D
environmental illusions, such as flying over a large
terrain in a plane.

These hardware modes, coupled with the ability to
simultaneously display 256 colors from a palette of 32768, let
the SNES quickly and effortlessly push advanced, 3D-like
graphics to the screen that were vibrant and colorful, whereas
the Sega Genesis was often defamed for its often grainy and
drab-looking displays.

The SPC700 sound chip was capable of handling 44 KHz
worth of sound data on 8 channels, and it had 64 Kb of
dedicated memory. However, its truly ground-breaking aspect
was the inclusion of the first Wavetable MIDI synthesizer
ever to appear on a console, meaning it could play “sampled”
sound from a generous selection of built-in MIDI instruments.
Compared to the poor radio-quality sound on the Genesis, the
SNES was in its own league. The chip was created by Sony
exclusively for the SNES with the intention that they and
Nintendo would partner to create a CD-ROM add-on for the
main console. This deal eventually fell through though,
leading to the development of Sony’s own 32-bit, CD-based
system called the Playstation.

IV. NINTENDO 64

A few years passed, and gamers were expecting richer, more
immersive game experiences making full use of the latest
technologies available. “Multimedia” was the buzzword of the
moment and companies were racing to develop the next “killer
app.” Developers were reaching the limits of what the Super
NES could do, so a new frontier had to be explored.

That new frontier would be 3D, computer graphics have
started to find their way into movies like Jurassic Park and
consumers were hoping to have the same experience in their
home video game systems. It eventually became necessary for
game processors to now be able to easily compute 64-bit
floating point numbers in order to handle the more complex
calculations involved in drawing polygons in 3D space
(instead of simulating 3D with rotating sprites).

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 15

Nintendo’s new system would not be an evolution from the
Super NES, but in fact be a totally revolutionary new
architecture. They switched from a MOS to a MIPS processor
and completely redesigned the internal architecture, and thus
the Nintendo 64 was born.

The emergence of the Nintendo 64, aptly named for its new
64-bit processor, helped to usher in the era of next-generation
3D graphics; it was essentially designed to (a) facilitate the
programmer’s transition from creating 32-bit games to
creating the new 64-bit games, and (b) be as efficient as
possible while dealing with the new meatier calculations and
instructions.

Nintendo’s most interesting decision with regards to the N64
was the fact that it was still a cartridge based system in a time
when game developers and consumers were looking to CD-
ROMs as the new medium for video games. CD-ROMs
promised a vast amount of storage, enabling CD quality music
and full motion video to be incorporated into games. CD-
ROMs were also inexpensive to produce and distribute.
Cartridges are more difficult and expensive to manufacture,
and the expense of silicon memory chips limited the capacity
to a fraction of that available on optical media.

The reason Nintendo must have chosen to go with cartridge
based media lies is the speed at which data on a cartridge is
made available to the N64’s CPU. There is no “loading time”
with cartridges. The ability to record information in on-
cartridge RAM is also not available on CD-ROMs.

The main processor, the MIPS R4300i, was based on the
R4400 series which was a popular desktop PC processor at the
time. The R4300 was configurable in both Big and Little
Endean, and it was capable of running in both 32-bit and 64-
bit modes, containing sixty-four registers that acted as either
32- or 64-bit depending on what mode was running. It had a
variable clock rate, running at about 93.75 MHz at top speed
but providing several lower frequencies. Also, though it had a
relatively low power dissipation to begin with (about 1.8W), it
had the ability to run in a reduced power mode. All of this
versatility, plus the existence of a co-processor unit that could
provide additional processing power, made it a prime choice
for Nintendo’s new gaming system. The N64 could save on
resources since not every word needed to be treated as 64-bits
long. It could easily support future low-speed external add-
ons, and it was flexible and easy to write for from the
programmer’s standpoint.

Half of the registers (called General Purpose Registers or
GPRs) were reserved for integer operations, while the other
half (called Floating Point General Purpose Registers or
FGRs) were used exclusively for the floating point operations.
Most of the actual calculations were performed “off-chip” by
the R4300’s co-processor unit which also helped to free up
resources in the main CPU (plus the coder was spared the
experience of having to write a bunch of messy algorithms to
do all these calculations from their end).

The co-processor was a special feature of the R4300 that made
it great for gaming systems. Dubbed the Reality Co-Processor
(RCP) in the N64, it was the workhorse of the R4300 handling
all of the memory management and most of the audio and
graphics processing. The RCP was split into two sections—
the Signal Processor performed all 3D manipulations and
audio functions, and the Drawing Processor pushed all the
pixels and textures to the screen.

Another new and innovative feature of the N64 was that it
incorporated a Unified Memory Architecture (UMA). This
means that none of the memory was designated for any one
specific purpose--the game programmer had full control over
how much of the 4Mb of RAM would be allocated to what
task. Additionally, the RAM could be expanded to 8Mb in
order to provide even more flexibility and performance.

V. CONCLUSION
The NES, SNES, and N64 showcase the different ways

Nintendo approached the design and implementation of each
of their consoles from the early 80s to the late 90s. The NES
was developed carefully with an eye toward American
attitudes toward video games after the industry shakedown of
1983. Nintendo aimed to recapture market share lost to the
Genesis console with the SNES. The Nintendo 64 was
designed to push the envelope and bring a new generation of
gaming to the home with immersive 3d environments.

These and other external influences – like business
partnerships, third-party developers, and economic climate –
affected the architectures and technologies used in the design
of each console. These systems are as much a product of the
times that they were designed in as the engineering that made
them possible.

REFERENCES
[1] “NES History.” http://www.games4nintendo.com/nes/history.php *
[2] “Nintendo Entertainment System.”

http://en.wikipedia.org/wiki/Nintendo_Entertainment_System
[3] “The 6500 Microprocessor Family.”

 http://6502.org/archive/datasheets/mos_6500_mpu_nov_1985.pdf
[4] Regel, Julian, “Inside Nintendo 64.”

 http://n64.icequake.net/mirror/www.white-tower.demon.co.uk/n64/
[5] “SNES – A Brief History of the Console.”

http://home.uchicago.edu/~thomas/xbox-history-nintendo-snes.html
[6] Valta, Jouko, “65c816 Tech Sheet”,

http://members.tripod.com/FDwR/docs/65c816.txt
[7] MIPS, “R4300i Product Information.”

http://www.mips.com/content/PressRoom/TechLibrary/RSeriesDocs/con
tent_html/documents/R4300i%20Product%20Information.pdf

[8] E. H. Miller, “A note on reflector arrays (Periodical style—Accepted for
publication),” IEEE Trans. Antennas Propagat., to be published.

[9] J. Wang, “Fundamentals of erbium-doped fiber amplifiers arrays
(Periodical style—Submitted for publication),” IEEE J. Quantum
Electron., submitted for publication.

[10] C. J. Kaufman, Rocky Mountain Research Lab., Boulder, CO, private
communication, May 1995.

*This source is particularly problematic as the same text that appears on this
page appears on the open internet in several locations. There did not appear to
be a definitive source for this text, but it was useful for perspective into the
design of the NES.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 16

Graphical Processing Units:
An Examination of Use and Function

Michael Crayton

Mike Foss
Dan Lindquist
Kevin Tostado

Abstract

Before graphical processing units (GPUs)

became commonplace on home computers,
application specific processors were generally
thought of as smaller market, specialty components.
In the GPU, however, a processor tailored to a single
purpose has become practically as ubiquitous as the
CPU. Because GPUs are essentially parallel
processors combined into one unit, they can
outperform standard CPUs in a variety of tasks,
graphics notwithstanding. Finding out how to put
their specialized application to use on processor
intensive problems has become a hotbed of research
in the last few years, and in this paper we explore
what kind of applications GPUs are being used for as
well as how they function on a more fundamental
level.

1. Introduction

Over the past fifteen years, there have been a

remarkable amount of changes in the world of
computing. During that time, the general computing
power of CPUs has increased dramatically. However,
GPUs have improved at an even more amazing pace.
Today’s GPUs have more than 25 times the
performance of a 3D graphics workstation of ten
years ago at less than five percent of the cost. [9] As
recently as 6 years ago, the graphics card simply
displayed the results as a “dumb” frame buffer, and
the majority of consumer 3D graphics operations
were mostly calculated on the CPU. Today, pretty
much any graphics functions can be delegated to the
GPU, thus freeing up the CPU to do even more
calculations in order to create realistic graphics. [9]

The term GPU (Graphical Processor Unit) was
coined by NVIDIA in the late 1990s to more
accurately describe the advancing state of graphics

hardware. [10] Initially, most GPUs were connected
to the CPU via a shared PCI bus. However, with 3D
animation and streaming video becoming more
ubiquitous, computer architects developed the
Accelerated Graphics Port (AGP), a modification of
the PCI bus built to help with the use of streaming
video and high-performance graphics. [11]

It is generally recognized that the existing GPUs
have gone through four generations of evolution.
Each generation has provided better performance and
a more sophisticated programming interface, as well
as driving the development of the two major 3D
programming interfaces, DirectX and OpenGL.
DirectX is a set of interfaces developed by Microsoft
including Direct3D for 3D programming. OpenGL is
an open standard for 3D programming available for
most platforms. [10]

The first generation of GPUs (TNT2, Rage,
Voodoo3; pre 1999) was capable of rasterizing pre-
transformed triangles and applying one or two
textures. This generation of GPUs completely
relieved the CPU from updating individual pixels, but
lacked the ability to perform transformations on the
vertices of 3D objects. It also had a very limited set
of math operations for computing the color of
rasterized pixels. [10]

Before the second generation of GPUs (GeForce2,
Radeon 7500, Savage3D; 1999-2000), fast vertex
transformation was one of the key differentiations
between PCs and high-end workstations. This
generation expanded the math operations for
combining textures and coloring pixels to include
signed math operations and cube map textures, but
was still fairly limited. The second generation was
more configurable, but not fully programmable. [10]

The third generation of GPUs (GeForce 3,
GeForce4 Ti, Xbox, Radeon 8500; 2001) provided
vertex programmability rather than just offering more
configurability. This generation of GPUs let the

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 17

application set a sequence of instructions to process
vertices. There is more configurability at the pixel-
level, but the GPUs were not powerful to be
considered “truly programmable.” [10]

The fourth and current generation of GPUs
(GeForce FX family with CineFX, Radeon 9700;
2002 to present) provide both pixel-level and vertex-
level programmability. This opens up the possibility
of passing off complex vertex transformation and
pixel-shading operations and computations from the
CPU to the GPU. DirectX 9 and various OpenGL
extensions take advantage of the programmability of
these GPUs. [11]

Recently, graphics hardware architectures have
started to shift away from traditional fixed-function
pipelines to emphasize versatility. This provides new
ways of programming to reconfigure the graphics
pipeline. As a result, thanks to graphics chip more
and more powerful general-purpose constructs are
appearing in PC machines. [12]

Currently, there is less time between releases of
new GPUs than CPUs, and the latest GPUs also have
more transistors than a Pentium IV. In the graphics
hardware community, it is the general consensus that
this trend will continue for the next few years. The
continued development of the graphics processors
will make GPUs much faster than CPUs for certain
kinds of computations. [13]

2. Comparisons of GPUs and CPUs

There has always been a trade-off between

performing operations on the GPU, which allows
better performance due to its “hardwired and heavily
optimized architecture,” and the CPU, which allows
more “flexibility due to its general and programmable
nature.” [14] Although GPUs have been steadily
improving speed as well as the amount of tasks
formerly handled by the CPU, many of the
techniques that programmers would like to be able to
run on the GPUs have not yet been reached due to
limitations of the speed and flexibility of the current
hardware. [14]

One example of how the GPU hardware has been
improving is the NV35 GPU: the NV35 GPU has a
transistor count of about 135 million, compared to the
Xeon CPU that has only 108 million transistors, of
which about two thirds of the CPU’s transistors
implement cache memory and not arithmetic. Other
GPUs, such as the GeForce FX 5900, are primarily

made up of a number of pixel pipelines implementing
floating point arithmetic. Modern GPUs now provide
standard IEEE floating point precision. [15]

On a program conducted to test vision algorithms,
the GeForce FX 5900 completed 145 estimations
each second, where as the same process, running on
an AMD Athlon with clock speed of 2.0 GHz, took
3.5 seconds to complete the same number of
estimations. Thus, the GPU is 3.5 times as fast. A
GeForce FX 5200 card ran 41 estimations per second
on this same program, which makes it roughly
equivalent to the processing power of an AMD
Athlon 2.0 GHz. [15]

Similar to CPU architectures, the GPU can be
broken down into pipeline stages. However, whereas
the CPU is a general-purpose design used to execute
arbitrary programs, the GPU is architectured to
process raw geometry data and to ultimately
represent that information as pixels on the display
monitor. [9]

3. Applications of GPUs

3.1. Overview

“Imagine that the appendix in primates had
evolved. Instead of becoming a prehensile organ
routinely removed from humans when it became
troublesome, imagine the appendix had grown a
dense cluster of complex neurons to become the seat
of rational thought, leaving the brain to handle
housekeeping and control functions. That scenario
would not be far from what has happened to graphics
processing units.”[2]

The processing power of the Graphics Processing
Unit is hardly utilized fully in most current
applications. It gets much hype from the
entertainment-driven world we live in and this is
accompanied by sparked interest and funding in
research fields. The GPU might surpass the CPU in
possible applications very soon within our lifetime.
It has already done so with power – current GPUs
have millions of transistors more than CPU
counterparts. GPU power is compounded with each
new release from its big developers, NVIDIA and
ATI. There are ways to harness this awesome power
for general-use computing. Even though GPUs have
limits (discussed at the end of this section), the field
of General Purpose Computing using GPU
architecture shows promising results.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 18

Mathematical modeling problems require
massive calculation in order to arrive at a final result.
In many of these applications, current CPU power is
a bottleneck for being able to rapidly progress
through the research process. Using GPU
architecture to speed this up has enjoyed particular
success in getting results in many areas, including:

• Audio and Signal Processing
• Computational Geometry
• Image and Volume Processing
• Scientific Computing

Brief examples from each of these subsections
emphasize the strengths of the GPU.

3.2. Room Acoustics Computation on Graphics
Hardware [3]

GPU hardware can be used to better model the
dynamics of sound in a static (or maybe even
dynamic) environment. A sound source is
approximated by thousands of sound rays emanating
from a single point (up to 64k). Each of these rays
will then bounce off of modeled surfaces up to 20
times, taking into account each wall’s absorption
properties. With time, the sound decays and is linked
with an echogram. The point of interest, the receiver,
is approximated as a sphere through which any rays
that cross through this volume of space can be
combined at every moment in time. These results
can be used to pick the fastest path for sound between
two points and can assist in designing the acoustics of
rooms, duct systems, and eventually entire buildings.

Figure 1: The GPU can power through many iterations of such a
complex model as evaluating the exact replica of a sound at any

point in a modeled room, given a point source of sound and
absorbing materials.

3.3. Interactive Collision Detection between
Complex Models Using Graphics Hardware [4]

Objects can be modeled in space with boundaries.
This project attempts to harness the computational
power of the GPU to detect and calculate what

happens when two deformable bodies collide. An
example is provided with a bunny crashing through a
dragon, each of which is modeled using thousands of
triangles. Pieces of interest can be followed and
analyzed by these algorithms. The collision detection
is performed using visibility queries at rates of up to
35 milliseconds per frame.

Figure 2: Complex modeling of body collisions done through

visible queries requires thousands of calculations per second, per
body fragment.

3.4. Interactive, GPU-Based Level Sets for 3D
Brain Tumor Segmentation [5]

Currently, skilled neuroscientists take large
amounts of time to set initializing spheres on many
layers of MRI data as parameters in anatomical
segmentation. Normal GPU architecture has been
tapped with a new responsibility as a PDE level-set
solver that can create models of tumors taken from
MRI data. Accuracy from several tests shows an
increase in volumetric representation accuracy from
82.65% by hand experts to 94.04% with unskilled
users. This is accompanied with a reduction in
rendering time for final structure from about 4 hours
to 30 minutes. This shows additional promise as it
can be used with any body part, where hand analysis
requires completion by a part-specific expert.

Figure 3: Modeling in biological application benefits

particularly well from the GPUs ability to perform incredible
amounts of parallel computation. The image (left) shows the
many inaccuracies that are accentuated by the better modeled

produced by a GPU (right)

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 19

3.5. GPU Cluster for High Performance
Computing [6]

Figure 4: This shows the basic architecture of how to create a

powerful cluster of GPUs.

To prove the power of group processing, this

project demonstrates a machine that compiles the
data for a particle dispersion flow model of a large
section of New York City. This machine utilizes a
cluster of 30 GPUs, run against a 30 node CPU
counterpart. The machine is capable of running 49.2
million cells per second, each cell containing a
Boltzmann equation for flow dynamics of particles.
“These results are comparable to a supercomputer.”
This has obvious implications for producing many
large-scale models of bio-terrorist threats as well as
pollution models.

Figure 5: A New York City particle dispersion and flow model
boasts the super-powers of combined GPUs. This large model

approaches speedups over a similar group of CPUs close to one
order of magnitude.

3.6. Limits on GPUs

From these examples, one might almost forget
that GPUs exist to fuel our need for entertainment
and expanding our imaginations. Over time they
have become increasingly powerful to where their
other applications cannot be ignored. They are
moving towards playing heavier roles as
coprocessors, as well as using their power to generate

the AI, physics, and full video compiling and sound
rendering for games. Additionally, their graphics
capabilities might reach the point where “high-
quality, real-time rendering may soon give way to
creating full-length commercial movies.”[7]
Additional programmability will also give developers
enhanced ability to write programs that increase
“real-time rendering effects…such as bump mapping
or shadows.” Why are these things only occurring
now, during our lifetime? As stated earlier, GPUs
have many limitations.

Graphics processors are excellent at producing
high-volume, parallel computations and iterations.
They are not able to make many of the decisions that
CPUs can. A basic list of logic functions shows the
computational limits of a graphics processor:

ARL MOV MUL ADD SUB MAD ABS RCP
RCC RSQ DP3 DP4 DPH DST MIN MAX SLT

While this list shows extensive, hard-wired

functions within the unit, there do not exist any forms
of branching or jumping. These are essential in
CPUs for even basic forms of programming logic.
GPUs rudimentary locations for small programs
concerning shading, but simply do not have the
ability to react to user input, timing, or make any
decisions in general. Other massive limitations to
GPUs include:

• Inability to access data within the GPU
• Inability to give more information than yes or

no on data status
• Current bottleneck is speed at which data can

be transferred to GPU
• No existing operating system for GPU

allocation of video memory
• Limits to the accuracy of the processor,

difficult to expand floating point [8]

While it is difficult to say if more research is

being done currently on how to use the GPU or how
to expand it, exciting results suggest that this
processor might be able to dominate the CPU in the
near-future both in technological ability and
profitability. As a concurrent result, mathematical
modeling and rendering of valuable problems in
society ranging from medical to musical applications
will be sped up and enhanced, giving rise to even
more cutting edge opportunities.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 20

4. Architecture of the GPU

4.1. Graphics Pipeline

GPUs have been becoming better and better at
rapid rates due to the number of transistors that can
now be placed on a chip and the demand for better
graphics in applications. One key element that
changes with each generation of GPU is the degree to
which the GPU is programmable. This has evolved
from rather simple configurability to more complex
programmability of the graphics pipeline. GPUs
implement a massively parallel pipeline which allows
for extremely efficient computation of large data sets.
Figure 6 gives an overview of the programmable
GPU pipeline.

Figure 6: The programmable graphics pipeline (taken from Cg

Tutorial [1])

This pipeline behaves similarly to the pipelines in
CPUs that we’ve learned about. The graphics
pipeline, however, can be thought to have several
sub-pipelines within it. Modern GPUs allow for user-
programming in two particular stages—vertex
processing and fragment processing. Several APIs
(Application Programming Interfaces) allow the
programmer to develop programs that can be utilized
by different GPUs which support the API. Examples
of this include Microsoft’s DirectX and the open-
source Open GL.

4.2. The Programmable Vertex Processor

Figure 7: Programmable Vertex Processor Flow Chart (taken

from Cg Tutorial [1])

The programmable vertex processor is the first
stage in the graphics pipeline. This is not unlike the
CPU pipeline in many ways. It has analogs to the five
stages in the MIPS pipelined processor. The GPU,
however, has some significant differences from the
CPU in terms of architecture. Much of CPUs ‘real
estate’ is devoted to branch prediction and caches.
The GPU, on the other hand, has very little space for
caches and no branch prediction. In fact, the GPU is
not at all geared towards branching and conditional-
type operations. GPUs are geared towards pumping
as many instructions in parallel through the pipeline
as possible. Indeed there are roundabout ways to
force conditionals, but the hardware was not designed
for this. The vertex processor performs a sequence of
math operations on each vertex as quickly as possible.
As GPUs become more powerful, they are able to
perform even more complex mathematical operations
in the hardware. This is important because higher-
level math functions are key to complex algorithms
that determine the lighting, shading, fog, and
complex geometrical functions. Fortunately, these
instructions are useful for scientific modeling and
other high-powered simulations, so there is a great
motivation to exploit the efficiency of the GPU here
in order to run the applications more quickly than on
a CPU. The bottom line is that the CPU is more
suitable for running logically structured instructions
in a program, and the GPU is more suitable for
running a smaller set of instructions on massive
amounts of data.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 21

4.3. Programmable Fragment Processor

The fragment processor is very similar to the
vertex processor, but it handles texture shading and
the post-rasterization processing. After the vertices
have been through the vertex shaders, assembled into
primitives, and rasterized, the fragments, which are
collections of flat data sent to be actually displayed
onscreen, are modified in the fragment processor.
This is the segment of the pipeline where things like
bump maps and other textures are applied based on
texture coordinate information that is included with
each fragment. After each fragment has been
transformed, one or several of them get transformed
into a pixel which is then sent to the framebuffer to
be displayed onscreen.

5. Programming the GPU

One of the main problems with past GPUs was
their inflexibility in allowing the user to render
objects precisely as they intended. Many had built in
routines that would help the processor by taking care
of graphical issues like transformation and lighting,
but a user couldn’t change those routines or add his
own. Most GPUs today are programmable, meaning
they allow users to modify the underlying methods
that transform the vertices and apply textures to
change the output. Naturally, this allows
programmers to tailor graphics much more closely to
their specifications in real time, which in turn leads to
some spectacular graphics.

GPUs, like other processors, have their own
instruction sets that can be strung together to write
programs. The biggest difference between a GPU’s
instruction set and a CPU’s instruction set is the lack
of program flow instructions. As mentioned earlier,
there are no jump or branch commands, but rather a
multitude of commands intended to perform quick
vector transformation, like dot products and distance
instructions. Most of the data that GPUs operate on is
in the form of vectors with up to 4 floating point
numbers. Typically, a GPU program will take a
vertex (or fragment if it’s on the fragment processor)
and other relevant information, like lighting, and
change the properties of that vertex based on what the
programmer wants.

It turns out that writing for GPUs in their
assembly is somewhat unwieldy, so developers at
NVIDIA and Microsoft created a language called Cg,

C for graphics, to make it easier to write shaders and
vertex transformations. This in turn will make
development time for high impact 3D effects less and
so should allow more artists to take advantage of
them.

6. References

[1] R. Fernando and M. Kilgard. The Cg Tutorial.
Addison-Wesley. USA: 2003.

[2] R. Wilson. “The Graphics Chip as

Supercomputer.” EETimes. Dec. 13, 2004.

[3] M. Jedrzejewski. “Computation of Room

Acoustics Using Programable[sic] Video
Hardware.”

[4] N. Govindaraju et al. “CULLIDE: Interactive

Collision Detection between Complex
Models in Large Environments using
Graphics Hardware.”

[5] A. Lefohn et al. “Interactive, GPU-Based

Level Sets for 3D Segmentation.”

[6] Z Fan. “GPU Cluster for High Performance

Computing.”

[7] M Macedonia. “The GPU Enters Computing's

Mainstream.” Computer Magazine.

[8] Thompson Hahn and Oskin. “Using Modern

Graphics Architectures for General-Purpose
Computing.”

[9] Zenz, Dave. “Advances in Graphic

Architecture.” Dell White Paper, September
2002.

[10] R. Fernando and M. Kilgard. The Cg

Tutorial. Addison-Wesley. USA: 2003.

[11] Bruyns, Cynthia and Bryan Feldman.

“Image Processing on the GPU: a Canonical
Example.”

[12] Thompson, Chris et al. “Using Modern

Graphics Architectures for General-Purpose
Computing: A Framework and Analysis.”

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 22

[13] Krakiwsky, Sean E. et al. “Graphics

Processor Unit (GPU) Acceleration of Finite-
Difference Time-Domain (FTDT)
Algorithm.”

[14] ATI Technologies. “Smartshader™

Technology White Paper.”

[15] Fung, James and Steve Mann. “Computer

Vision Signal Processing on Graphics
Processing Units.”

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 23

Abstract—As the ability to place more transistors on a chip

continually increases, and while clock speed seems to have hit a
wall before reaching 4 GHz, Intel and AMD have made a move
away from just increasing clock speed and now have begun to
focus on multicore processors. This paper investigates why single
core processors are losing out to multicore processors and
investigates the technology used in IBM’s Power5 chip.

Index Terms—microprocessors, multiprocessors, MP-on-a-
chip, processor scheduling

I. INTRODUCTION
HE time has obviously arrived when raw clock speed
cannot satisfy the needs of high performance software.

Intel has abandoned its push to hit the 4GHz mark and instead
followed the moves of AMD to focus on development of new
processors which have multiple cores. Current plans are for
the release of dual-core processors in 2005, with an eight-core
processor to be released in 2006 and a plan for a sixteen-core
processor to be released sometime afterwards. One chip
designer has even gone so far as to design a single chip with
96 different cores [3].
 Multicore processors are becoming the standard in the
multiprocessor market for reasons other than just pure clock
speed. As the ability to put more transistors on a chip
increases, chip manufacturers can add more and more
complexity to their dies. Despite the ability to place nearly a
billion transistors on a chip, the size of using superscalar
technology on a single-processor chip is rather large. The
area devoted to the logic that goes towards issue queues,
register renaming, and branch prediction is so large, that
instead of having such complex logic, a chip could hold four
simpler processors [1]. Additionally, by some measures,
superscalar processors do not offer much advantage over a
regular pipelined processor. Since the everyday integer
program has some limit of parallelism that can be exploited.
In fact, when comparing an integer program on the 200MHz
MIPS R5000 (a single issue machine) and the 200MHz MIPS
R10000 (a four issue machine), the R5000 achieves a score on
the SPEC95 benchmark that is about 70% of the R10000,

Submitted to Mark Chang on 12/16/2004 for ENGR3410: Computer
Architecture.

Thomas C. Cecil is a student in Electrical and Computer Engineering at the
Franklin W. Olin College Of Engineering , Needham MA 02492. (e-mail:
thomas.cecil@students.olin.edu).

nowhere near the 25% that would be expected if parallelism
could be fully exploited [1].
 Another argument for multicore processors is the current
trend in software use. Now that computers are often running
several processes in parallel, a multiprocessor aware operating
system can utilize the multicore processors by dividing the
processes between the two cores of the chip. Given the more
common use of visualizations and other processor intensive
processes these days, multi-core processors seem even more
practical.
 Significant data is not yet available for the multicore
processors planned by Intel and AMD, but IBM has released
details about their Power5 processor. We will take a look at
how IBM managed to overcome some of the challenges
presented by switching to a multicore processor.

Dual Core On-Chip Multiprocessors and the
IBM Power5

Thomas C. Cecil

T

Fig. 2. Overview of the Power4 (a) and Power5 (b) chips. In the Power5, the
L3 cache has been moved above the fabric controller to reduce the traffic to
memory and the memory controller has been moved on chip thanks to 130nm
technology, thus eliminating an extra chip and lowering the total number of
chips needed for the system[4] .

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 24

II. THE IBM POWER5
As the newest in the line of the Power4 series, the Power5

is IBM’s new multicore chip. The Power5 is packed with
several features that make it an excellent example of multicore
processing.

In a typical processor, because the execution unit is not
used much more than a quarter of the time, microprocessor
architects began to use multithreading to increasing the time
that the processor was actually doing work. To the operating
system, it looks as if the chip actually has more than one
processor, but on the inside, the processor is just dividing the
task up into threads and executing it in a different fashion.

There are several different ways in which multithreading
can occur. One is to use coarse grained threading in which
only one thread is executing at a time. When the thread
reaches a point where there is some long latency, for example
a cache miss, the other thread gets some of the processor time.
This turns out to be an expensive operation in itself since there
is some overhead assigned to swapping threads, usually at the
cost of a few cycles.

Another form of multithreading is fine grained, where each
thread is executed in a round-robin style. The disadvantages
here include a need for more hardware and that periods of
high latency end up leaving the processor idle.

For their Power5 processor, IBM chose to use Simultaneous
Multithreading, a process that allows the processor to fetch
instructions from more than one thread and can dynamically
schedule the instructions in a manner that allows for
maximum performance. The Power5 allows each processor to
use two threads, which maximizes performance and minimizes
issues such as cache thrashing.

Figure 2 shows a diagram of the system structures of the
IBM Power4 and Power5 chips. There is a noticeable
difference between the two in that the L3 has been moved
from the memory side of the fabric controller to the processor

side of the fabric controller. By moving the L3 cache away
from the fabric controller, traffic going to memory is reduced,
which is useful in multicore processors when multiple threads
might be seeking memory or L3 cache data. In addition, the
L3 cache directory is on the chip, which means that cache
misses can be predicted without having to deal with an off
chip delay. These changes in structure allow the Power5 to
support up to 64 physical processors, whereas the Power4
could only support 32.

To aid in another possibly troubling cache issue, the L2
cache is divided up into three identical slices. The data’s
actual address determines which of the three slices it will be
cached in, and either core can access any of the three slices.
 The processor core is able to operate in both simultaneous
multithreaded mode and singlethreaded mode. In SMT mode,
the two cores have two separate instruction fetch address
registers for the two separate threads. The instruction fetch
stages alternate between the two threads since there is only
one instruction translation facility. When the processor
switches to singlethreaded mode, it uses just on program
counter and instruction fetch unit. In any given cycle, up to
eight instructions can be fetched, but all fetched instructions
come from the same thread.

 The two cores also share a trio of branch history tables and
a global completion table (GCT) which is utilized to check for
hazards and to keep track of up to twenty entries which are
made up of groups of five instructions. A group will be
committed when all instructions in that group is complete and

Fig. 1. Diagram of proposed restructuring of a chip from [1]. The chip floorplan on the right is a six-issue dynamic superscalar processor and the chip on the left
is a four-way, single chip multiprocessor. Since the four-way processor needs less area to handle the superscalar logic, four simple processors can fit in the same
area that the previous single core chip had used.

Cache Shared

?
Type Size On Chip?

L1 Data N 4 way set assoc 32K Y
L1 Instr Y 2 way set assoc 64K Y
L2 Y 10 way set assoc 1.875M Y
L3 Y ? 36M N

Table 1. Summary of cache resources in the Power5.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 25

the group is the oldest in entry in the GCT for that particular
thread.
 The dispatch unit can dispatch up to five instructions every
cycle, and chooses which instructions to dispatch based upon
thread priorities. Before being dispatched, a group must first
update the GCT, resources are allocated, and hazards are
detected. Afterwards, the datapath in figure 3 is followed.
 It should be noted that there are 120 general purpose
registers and 120 floating point registers. Those registers are
shared between the two threads, and when the processor
operates in singlethread mode, all registers are made available
to the single thread.
 The Power5 has a few additional features which make it an
even more powerful chip. The first is dynamic resource
balancing, which has the job of making sure that the two
threads are getting through processor properly. The dynamic
resource balancing tools are able to keep track of how the
GCT is being used by the different threads as well as keeping
track of cache misses to determine if one thread is using more
than its fair share of the resources. The tool can then make a
decision to throttle the offending thread by decreasing the
thread priority, inhibiting the decode stage, or flushing a
thread’s instructions and inhibiting decode until traffic clears
up.
 The adjustable thread priority feature of the chip gives
software the ability to decide the amount a particular thread
can dominate resources. This power can be granted on any
level of software, from the operating system all the way to a
particular application.
 By allowing custom priority levels, software that is idling,
or software that is spinning while waiting for an unlock can
turn down their priorities. Background tasks can take a
backseat to more mission critical tasks.
 The adjustable thread priority also provides power saving
features. Figure 4 shows the how performance changes for

various thread priority settings. Note that if the threads have
priority levels (1,1), (0,1), or (1,0) then the processor enters a
power saving mode to reduces power consumption while not
performing important processing tasks. Additionally, if a
thread is not in use, it becomes either dormant or null. When
dormant, the operating system does not assign any tasks for
the thread, but the thread can be activated by the active thread
or by an external or decrementer interrupt. When a thread is
null, the operating system is oblivious to the existence of that
thread, which is useful for singlethread mode.
 There are a few other power saving features of the Power5,
including dynamic clock gating, which shuts off clocks in an
area if that area will not be used in a specific cycle.

III. CONCLUSION
Although not much information is currently available

regarding the current designs of multicore processors, they are
quickly becoming the focus of the processor industry.

ACKNOWLEDGMENTS
Much gratitude to IBM for actually publishing a paper

about their Power5 processor. Additional thanks to the
Computer Science Laboratory at Stanford University for their
work on the Hydra processor. Even more gratitude is
expressed to IBM and Stanford for their figures, which are
used extensively both in this paper and in the accompanying
presentation.

Fig. 3. The pipeline used in the Power5 Processor. (IF = instruction fetch, IC = instruction cache, BP = branch predict, D0 = decode stage
0, Xfer = transfer, GD = group dispatch, MP = mapping, ISS = instruction issue, RF = register file read, EX = execute, EA =
compute address, DC = data caches, F6 = six-cycle floating-point execution pipe, Fmt = data format, WB = write back, and
CP = group commit) [4].

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 26

REFERENCES
[1] K. Olukotun, K. Chang, L. Hammond, B Nayfeh, and K. Wilson, “The

Case for a Single Chip Multiprocessor,” Proceedings of the 7th Int. Conf.
for Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VII), pp.2-11, Cambridge, MA 1996.

[2] L. Hammond, K. Olukotun, “Considerations in the Design of Hydra: A
Multiprocessor-On-A-Chip Microarchitecture. Stanford University,
Stanford, CA, February 1998.

[3] Kanellos, Michael “Designer Puts 96 cores on single chip.” CNET
News.com, 10/6/04.

[4] R. Kalla, B. Sinharoy, J. Tendler, “IBM Power5 Chip: A Dual Core
Multithreaded Processor,” IEEE Micro 2004 pp.40-47.

Fig. 4. Various thread priorities and resulting processor resource
allocation[4].

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 27

Pong on a Xilinx Spartan3 Field Programmable
Gate Array

Kate Cummings, Chris Murphy, Joy Poisel

Abstract— This paper describes the implementation of the
game Pong on a Xilinx Spartan3 FPGA and discusses the tool
flow for programming an FPGA with the Xilinx ISE Webpack.
The game has the same rules as the classic arcade version of
Pong, but adds a unique infrared user interface for controlling
the paddles. The FPGA is programmed to serve as a simple video
card, a controller for the ball and paddles, and a scorekeeper
with a segmented LED display.

I. I NTRODUCTION

A. History of Pong

The history of Pong is closely interwoven with the history
of video games in general. There is controversy surrounding
who created the first video game. The main competitors for the
title of the “Father of Video Games” are Willy Higginbotham,
Steve Russell, Ralph Baer and Nolan Bushnell. Between the
years 1958 and 1962 each of these men created a video
game of sorts. One game used an oscilloscope and an analog
computer, another used a Digital PDP-1 computer, and another
used a TV. Some of the inventors knew their idea had potential
and a market, others did not. Ralph Baer created a game based
on the leisure sport of ping-pong. By the 1970s, there were
many different video games on the market, some based off of
a ping-pong concept.

B. The Rules of the Game

Pong is played by two players, using similar rules to the
rules of Ping-Pong. Each player has a paddle on one side of
the screen; the goal is to hit a moving ball back at the other
player. Each time a player misses the ball, the other player
scores a point. Once a player reaches a certain number of
points, that player wins and the game is over.

C. Updating Pong

This project focused on creating an updated version of Pong.
The basic rules of the game were retained, but the game was
implemented on an FPGA and given a new user interface. The
FPGA was programmed with modules to create a simple video
controller, a scorekeeper, and a controller for the movement
of the paddles and the ball on the screen. The paddles were
controlled by an array of photosensors placed along the edge
of the computer monitor. Players move their hand along the
array of photosensors, and the paddle moves with the hand.

II. GAME DEVELOPMENT

A. VGA

The first step in the development of the modernized version
of Pong was to create a simple video card. To start, a simple

VGA controller was created. The VGA (Video Graphics
Array) standard was introduced by IBM in 1987 and supported
monitor resolutions up to a maximum of 640 pixels wide
by 480 pixels tall. Since then, improved standards such as
XGA (Extended Graphics Array) and UXGA (Ultra Extended
Graphics Array) have been introduced, but nearly all monitors
sold today still support the VGA standard. A male video
connector with pinout information is pictured in figure 1.

Fig. 1. Pinout information for a standard Male VGA Connector

1: Red out 6: Red Ground 11: Monitor ID 0
2: Green out 7: Green Ground 12: Monitor ID 1
3: Blue out 8: Blue Ground 13: Horizontal Sync
4: Unused 9: Unused 14: Vertical Sync
5: Ground 10: Sync Ground 15: Monitor ID 3

TABLE I

PIN CONNECTIONS FORVGA CONNECTOR

Information about color is contained on the red, green, and
blue video signals. If these were digital inputs, the monitor
would be able to display a total of eight colors. Red, green,
and blue could each be on or off, allowing for23 = 8
discrete states. The colors created by mixing these colors
additively are shown in figure 2. Video signals from modern
computers are typically analog, allowing for more colors by
setting varied levels of red, green, and blue. On the monitor,
the color of each pixel is determined by the magnitude of
the red, green, and blue signals at the time the pixel is being
drawn. A simple video card was created which was capable of
producing digital signals for each of the three color outputs.
It operated according to the VGA standard, at a resolution of
640 horizontal pixels by 480 vertical pixels.

VGA timing information is contained on the horizontal and
vertical synchronization signals (HSync and VSync). When
the end of a line is reached, the HSync signal goes high for
a brief period, telling the monitor to move to the next line.
The frequency at which this occurs, in kHz, is known as the
horizontal refresh rate. The VSync signal goes high when the

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 28

Fig. 2. Mixing Colors of Light

end of the last line is reached, and tells the monitor to go
back to the top of the screen. The frequency at which the
VSync signal spikes is also known as the vertical refresh rate
of the monitor. Details of the synchronization signals can be
seen in figure 3. If the HSync and VSync signals go high on
their spikes, they are said to have a positive polarization. If
they go from high to low on the spike, they have a negative
polarization. The polarization of the signals depends on factors
such as the refresh rate and resolution, and varies from monitor
to monitor. After developing the VGA video controller, the
timing was adjusted to operate at a resolution of 1024x768
pixels in accordance with the XGA standard, with a vertical
refresh rate of 75Hz.

Fig. 3. Synchronization signals for VGA monitors

When a the electron beam in a Cathode Ray Tube, or CRT,
screen reaches the end of a line the beam must move quickly
to the start of the next line. To avoid image problems caused
by the changing speed of the beam, the video signal is blanked
during the retracing process. The blank part of the video signal
before the HSync pulse is called the front porch, and the blank
part after the pulse is called the back porch (see figure 4).
This also assures that the displayed information will line up

correctly on the monitor. For a CRT, as much as 25% of video
signal time needs to be blanked. Digital flat panel screens do
not require as long of a blanking time because they do not
utilize a scanning electron beam, so blanking time standards
differ for CRTs and flat panel displays.

Fig. 4. The blanking period in a video color signal

III. T OOL FLOW

A. Programming

The first step in developing for an FPGA is to create a
description of what is being implemented in the hardware.
Development for this project was done using the freely avail-
able Xilinx ISE WebPack. Development can be done using a
number of different formats, though all of the code for this
project was written in Verilog. Xilinx WebPack also supports
VHDL, and can translate schematics and state diagrams from
graphical representations into hardware descriptions.

B. Synthesis

The first step in converting the description of the hardware
into an actual FPGA implementation is synthesis. This process
involves compiling the code to check syntax and optimiz-
ing for the design architecture being used. Code errors and
warnings are detected at this step. After synthesis completes,
the input file, whether Verilog, VHDL, or other, has been
transformed into a description using only logical operations,
flip flops, adders, and other elements.

C. Implementation

After synthesis, it is possible to assign package pins. This
allows the user to assign outputs and inputs in the Verilog
modules to specific pins on the physical FPGA. For example,
given the following Verilog module, we would assign pins for
the input ‘light’, and the output ‘button’.

module lightandbutton(light, button);
input button;
output light;
assign button = light;

endmodule

On prototyping boards, some pins on the FPGA have al-
ready been assigned to functionality on the board. The Digilent
board for the Spartan3 has several light emitting diodes and

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 29

buttons on it, as well as a clock. Each pin on the FPGA
can be assigned as an input or an output, so any pin can be
used for interfacing. These assignments act as constraints in
the following steps to control how the software chooses to
layout the FPGA. Rules can also be added on what areas of
the chip are used for laying out the design, and on specific
timing constraints. For simple designs these steps are often
not necessary, but are essential for larger projects or projects
with high clock rates.

D. Translation and Mapping

After the synthesis process has been successfully completed,
translation to a format useable by the FPGA starts. First,
the results of the synthesis operation are converted into a
generic Xilinx format. The next step, known as the ‘mapping’
step, converts this generic file format into a design which is
optimized for the specific FPGA being targetted.

E. Mapping, Placing and Routing

After the specific design has been prepared, the location of
each flip flop and logic element must be selected on the FPGA,
and signals must be routed via the on-chip wiring. The user
has the option to manually place and route the design, which
involves deciding where the components will be located on
the FPGA chip, as well as how the signals will be routed. If
the system automatically places the elements, their locations
can be tweaked after the fact. After placing and routing of the
signals has completed, a file can be generated for downloading
to the actual FPGA device.

F. Programming and Running

The final step in the FPGA design process is to actually
configure the FPGA. This consists of generating a file in a
format suitable for transferring to the FPGA, and transferring
it. If a prototyping board is used, the design can also be
downloaded to an on-board flash memory. The design will
thus be reloaded if the board loses electrical power.

IV. T HE CONTROLLERS

The controllers for the Pong game consist of a linear array of
infrared sensors mounted in a casing that the players put their
hand into (see Figure 5). Phototransistors sense the position of
the hand within the casing, and the player controls the Pong
paddle by moving their hand up and down.

Fig. 5. Infrared pong controller

A. The Infrared Sensors

Figure 6 shows the circuit for the infrared sensors. Each
sensor consists of an LED and an N-P-N phototransistor. The
LED emits infrared light, which is sensed by a phototransistor
located directly across from the LED. The emitter side of the
transistor outputs an analog signal proportional to the amount
of light that the phototransistor senses. This analog signal goes
into a comparator, which compares the voltage of the signal
to a reference voltage created by a voltage divider. The output
of the comparator is a digital signal which indicates whether
there is an object between the LED and the phototransistor.
This digital signal is fed into the FPGA, which changes the
VGA signal to display the correct paddle position.

Fig. 6. Schematic for a single sensor element of the controller

B. The Array

Controllers are placed on both sides of a 19” monitor. Along
the 12 vertical inches of display, there is a photosensor every
2 inches. The player moves their hand to the position along
the screen where they want the Pong paddle to move. If the
hand is blocking one photosensor, the center of the paddle
is positioned at the photosensor. If the hand is blocking two
adjacent photosensors, the center of the paddle is positioned
halfway between the two photosensors. If the hand is blocking
more than two photosensors or two non-adjacent photosensors
the paddle does not move.

V. CONCLUSION

The FPGA is well suited for the task of creating the
updated version of Pong due to its capacity for handling
large quantities of inputs and outputs. The FPGA offers an
interesting format in contrast to a standard CPU for a video
game console because it is a stand alone unit and is extremely
more customizable. Writing code for an FPGA is clearly more
difficult than software programming, as developers must be
acutely aware of the hardware being targeted. The advantages
of an FPGA over a standard integrated circuit are numerous,
especially for rapid prototyping purposes. The hardware is
reconfigurable, allowing for easy troubleshooting and testing.
Although not the best option for all applications, the FPGA
proved a good platform for Pong.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 30

Fig. 7.

REFERENCES

[1] Compton, Katherine and Hauck, Scott. Reconfigur-
ing Computing: A Survey of Systems and Software.
http://ca.ece.olin.edu/handouts/ComptonReconfigSurvey.pdf

[2] De Chantal, Sylvain.Who’s the real father of Videogames.Kinox Articles.
http://www.kinox.org/articles/vgfather.html

[3] Don, Steinberg.25 Years of Video Games.The Philadelphia Inquireer.
June 22, 1997. http://www.bluedonut.com/vidgames.htm

[4] Tyson, Jeff. How Computer Monitors Work.HowStuffWorks.com.
http://computer.howstuffworks.com/monitor.htm

[5] Wikipedia. Field-programmable gate array. Wikipedia. 2004.
http://en.wikipedia.org/wiki/FPGA

[6] Winter, David.Pong-Story.1999. http://www.pong-story.com
[7] Xilinks. Pong-Story. ISE Help Contents.

file:///C:/Xilinx/doc/usenglish/help/iseguide/iseguide.html/

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 31

The PowerPC Architecture: A Taxonomy, History,
and Analysis

Alex Dorsk, Katie Rivard, and Nick Zola

Abstract— The PowerPC processor has been at the heart of all
Apple Macintosh computers since the 1991 alliance of Apple, IBM,
and Motorola. Using the RISC architecture, it has key features
that distinguish it from both the MIPS and x86 style of processors.
This paper outlines the PowerPC development timeline, explains
the PowerPC instruction set and noteworthy functional units (vec-
tor processing, floating point, and dispatch), compares the Pow-
erPC to the MIPS and x86 processors, and concludes with an ex-
ploration of the many other uses of the PowerPC processor beyond
the Macintosh.

I. HISTORY

A. IBM POWER and the Motorola 68K

In the early 90s, Apple Computer’s machines were powered
by the 68000 series of processors by Motorola. At the same
time, IBM was producing the POWER (Performance Optimiza-
tion With Enhanced RISC) processor, designed for mainframes
and servers. IBM was looking for more applications of its RISC
processor, and Apple wanted a more powerful processor for its
personal computers that would also be backwards compatible
with the 68K. Apple, IBM, and Motorola joined forces to cre-
ate the AIM alliance, and thus, the PowerPC was born.

B. 601 (March 1994)

• Transistor Count: 2.8 million
• Die size: 121 mm2

• Clock speed at introduction: 60-80MHz
• Cache sizes: 32KB unified L1

Key points:

• First successful RISC processor in the desktop market.
• Large, unified cache was uncommon and gave the 601 a

significant edge on other processors.
• A unit in the instruction fetch phase of the pipeline called

the instruction queue held up to 8 instructions and facilli-
tated branch prediction and handling.

• Branch folding replaced “always branch” branches with
their target instruction, saving two clock cycles.

• Since the integer unit handled memory address calcula-
tions, during long stretches of floating-point code the float-
ing point unit essentially used it as a dedicated load-store
unit.

• Had a condition register which stored various bits of meta-
data about the last calculation, accessible to the program-
mer.

C. 603 (May 1995) and 603e (Oct 1995)

The 603 came out in May of 1995. Six months later, an up-
date was issued with a larger cache and a faster clock, making
the chip more feasible for 68K emulation. Data below is for the
newer chip, the 603e.

• Transistor Count: 2.6 million
• Die size: 98mm2

• Clock speed: 100MHz
• L1 cache size: 32K split L1

Key points:
• Enter the multiply-add floating-point instruction,

which completes both floating point operations before
rounding.

• Added a load-store unit, possibly due to the successful
partnership of the integer and floating point units in the
601.

• Added a system unit to handle the condition register.

D. 604 (May 1995)

The 604 was introduced in May of 1995. Just over a year
later, an upgrade came out with a larger cache and a faster
clock.

• Transistor Count: 3.6 million
• Die size: 197mm2

• Clock speed: 120MHz
• L1 cache size: 32K split L1

Key points:
• Added two pipeline phases, Dispatch and Complete.
• Integer unit expanded to contain three subunits: two fast

units to do simple operations like add and xor, and one
slower unit to do complex operations like multiply and di-
vide.

• Modified the branch unit’s prediction method from static
to dynamic, adding a 512-entry by 2-bit branch history ta-
ble to keep track of branches. Improving the branch unit
was important to counteract the increased branch penalties
of a longer pipeline.

The upgrade to the 604, the 604e, added a dedicated Condition
Register Unit and doubled the sizes of the instruction and data
cache.

E. 750, Apple G3 (November 1997)

• Transistor Count: 10.5 million
• Die size: 83mm2

• Clock speed at introduction: 350-450MHz

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 32

• Cache sizes: 32KB L1 (instructions), 32KB L1 (data),
512KB L2

Introduced in November of 1997, the PPC 750 was very
much like its grandparent, the 603e, especially in its four-stage
pipeline, load-store unit, and system register unit.

The integer unit had two subunits for simple and complex
operations, and the floating-point unit had been improved es-
pecially with respect to the speed of execution of complex
floating-point operations. The biggest improvement for the 750
was in its branch unit, which included a 64-entry branch tar-
get instruction cache to store the target instruction of a branch
rather than the branch address, saving valuable cycles by elim-
inating the fetch on branch instructions.

The 750 had a larger reorder buffer than the 603, but a smaller
one than the 604. The 750 also had only half the rename reg-
isters of the 604 and fewer reservation stations – perhaps the
designers expected the shorter pipeline and better branch han-
dling would make up for the difference. An additional respect
in which the 750 was lacking was that Intel and AMD already
had vector capabilities in their current processors, but the PPC
wouldn’t support vector processing until the 7400.

F. 7400, Apple G4 (Aug 1999)

• Transistor Count: 10.5 million
• Die size: 83mm2

• Clock speed at introduction: 350-450MHz
• Cache sizes: 32KB L1 (instructions), 32KB L1 (data),

512KB L2
The MPC7400 came out in August of 1999 essentially the

same chip as the 750 with added vector processing functional-
ity. Its 4-stage pipeline kept the clock speed of the PPC line
down for quite some time, which cost the PPC credibility in the
desktop market until the arrival of the newer G4s (PPC7450).

Key points:
• Floating-point unit now full double-precision; all opera-

tions have the same relatively low latency. This hadn’t
happened before – complex FP operations often took much
longer.

• Addition of a Vector Unit, which operated on 128-bit
chunks of data. Contained subunits to do permutations
and ALU operations on vectors of data. 32 128-bit vec-
tor registers and 6 vector rename registers came along for
the ride.

G. 7450, Apple G4 (Jan 2001)

• Transistor Count: 33 million
• Die size: 106mm2

• Clock speed at introduction: 667-733MHz
• Cache sizes: 32KB L1 (instructions), 32KB L1 (data),

256KB L2, 512KB-2MB L3 cache
Key improvements:

• Pipeline deepened to 7 phases:
1) Fetch-1
2) Fetch-2
3) Decode/Dispatch
4) Issue (new) - eliminates stall in previous processors

if reservation stations on a necessary execution unit

Fig. 1. Diagram of the PPC970/G5 architecture

was full. There are three issue queues: a general
queue, a vector queue, and a floating-point queue

5) Execute
6) Complete
7) Writeback/Commit

• Branch prediction uses both static and dynamic tech-
niques, with a 2048-entry branch history table and a 128-
entry branch target instruction cache storing not just the
branch target instruction but the first four instructions af-
ter the target. Again note that the deeper pipeline required
more impressive branch prediction.

• Floating point unit downsized; operations now had a 5-
cycle latency, and only 4 instructions could be issued in
every 5 cycles.

• Vector unit, now called the “Velocity Engine”, was sig-
nificantly expanded to create more specialized execution
units.

H. 970, Apple G5 (June 2003)

Special attention will be given to the current PowerPC pro-
cessor.

• Transistor Count: 58 million
• Die Size: 66mm2

• Clock speed at introduction: 1.8-2.5 GHz
• Cache sizes: 32K L1 (data), 64K L1 (instructions), 512K

L2
The most recent processor at the heart of Macintosh comput-

ers is now the PowerPC G5, introduced in June 2003 and ad-
vertised by Apple as the world’s first 64-bit desktop processor.
Key features include its native support for 32-bit applications,
a dual-channel gigahertz frontside bus, two double-precision
floating point units, a superscalar execution core supporting up
to 215 in-flight instructions, group instruction dispatching, and
a 128-bit vector processing unit (the “Velocity Engine”).

Cleverly, the PowerPC instruction set was conceived from
the beginning to accommodate both 32-bit and 64-bit code.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 33

Thus all existing 32-bit applications run natively on the G5
without any modification or emulation required. In order to
speed up communication between the processor and the mem-
ory controller, the G5 carries a dual-channel frontside bus with
one link traveling into the processor and one traveling out,
avoiding the time wasted by the traditional method of carrying
data in only one direction at a time.

The G5 comes with twice the double-precision floating hard-
ware of the PowerPC G4. It can complete at least two 64-
bit mathematical calculations per clock cycle, and possesses
a fused multiply-add feature allowing each floating-point unit
to perform both an add and a multiply operation with a single
instruction, as well as full precision square root calculations.
The fused multiply-add instruction accelerates matrix multipli-
cation and vector dot products, and round-off occurs only once
as opposed to twice, increasing the accuracy of the result.

The PPC dispatches instructions in groups of up to five, send-
ing them to the queues where they are further broken down for
out-of-order processing. By tracking groups rather than indi-
vidual instructions, the PPC is able to execute and keep orga-
nized a larger number of in-flight instructions, 215 in all when
including instructions in the various fetch, decode and queue
stages.

The Velocity Engine of the G5, introduced with the PowerPC
G4 (7450) and still using that same set of 162 AltiVec instruc-
tions, is the famed vector processing unit of the PowerPC. The
engine utilizes SIMD processing, applying a single instruction
to multiple data simultaneously, ideal for computationally in-
tensive tasks like transforming large sets of data. The Velocity
Engine is used for rendering 3D images, encoding live media,
and encrypting data.

The PowerPC is fabricated in IBM’s facility in East Fishkill,
New York, using a 90 nm process with over 58 million transis-
tors and eight layers of copper interconnects. Each transistor is
built on a layer of silicon on insulator (SOI), connected by over
400 meters of copper interconnects per processor. The G5 rep-
resents the transition from the traditional aluminum wiring on
which the semiconductor industry has relied for more than 30
years, yielding a 40% gain in conductivity and faster processing
operations. [9][10]

II. COMPARE: WHAT MAKES PPC DIFFERENT?

A. Functional Units

1) AltiVec “Velocity Engine” Vector Processing: In the
PowerPC G4 and G5, the Velocity Engine is the 128-bit vec-
tor execution unit operating in tandem with the regular integer
and floating point units. It provides highly parallel internal op-
erations for simultaneous processing of up to 128 bits of data
– four 32-bit integers, eight 16-bit integers, sixteen 8-bit inte-
gers, or four 32-bit single floating-point values. The engine is
designed for algorithmic intensive computations and high band-
width data processing, all performed on-chip using 162 AltiVec
instructions and single instruction, multiple data (SIMD) pro-
cessing.

The vector unit is composed of thirty-two 128-bit wide vec-
tor registers. On the G5 (and first-generation G4s) there are
two fully pipelined processing units: a vector permute unit and

Fig. 2. Ways to split up one of the 32 128-bit vector registers.

Fig. 3. Diagramming the vector multiply-add floating point operation

a vector ALU unit (for simple and complex integer and floating
point operations). In the newer G4s there are four units indi-
vidually dedicated to permute, simple integer, complex integer,
and floating-point operations. The registers may hold either in-
tegers or single precision floating-point values, and the 128 bits
may be divided as in figure 2. The value contained in each reg-
ister is a vector of elements; an AltiVec instruction is performed
on all elements of a vector at once. The AltiVec operations in-
clude the traditional add, subtract, multiply, and the PPC fused
multiply-add, as well as some vector-specific operations like
sum-across (sum all the elements in a vector), multiply-sum
(multiplies and sums elements in 3 vectors), permute (fills a
register with bytes from 2 other registers), and merge (merges
two vectors into one).

As an example to demonstrate its capability, consider the op-
eration vmaddfp, which multiplies 4 floats by 4 floats and then
adds the result to 4 more floats, in a single instruction (See fig-
ure 3). This instruction is the equivalent of the fused multiply-
add available in the scalar floating-point PowerPC instruction
set. This is one of the ways in which the Velocity Engine is able
to encapsulate a large combination of several regular scalar op-
erations in a single instruction, exceeding the general purpose
processor instruction set.

There are five general classes of AltiVec instructions:
load/store, prefetch, data manipulation, arithmetic and logic,
and control flow. The processor executes a vector instruction
out of the same instruction stream as other PowerPC instruc-
tions. The vector instructions are RISC-style and designed to
be fully pipelineable. While optimized for digital signal pro-
cessing, the instructions are still general in nature.

The AltiVec instructions function as an extension to the Pow-

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 34

erPC instruction set. The vector unit is optimized to enhance
performance on dynamic, media-rich applications such as video
and audio, but has also found large application in the scien-
tific, engineering, and educational community. Some exam-
ples are the large computations necessary for modern cryptog-
raphy, the dependency of many applications on the fast Fourier
transform (FFTs), and the biotechnology industry’s completion
of the human genome project and DNA sequencing. Its de-
sign toward computationally intensive repetitive tasks also en-
ables it to competently perform modem and telephony func-
tions. The SETI@home (Search for Extra-Terrestrial Intelli-
gence) project’s reliance on the FFT has even led to the pro-
posed slogan: “When ET phones, the G4 will be listening.”
[9][11][12]

2) Floating Point: The PowerPC 970 (G5) floating point
unit consists of two parallel double-precision floating point
units. Each unit has a ten-entry queue that issues instructions
into a nine-stage pipeline. Floating point instructions use a set
of 32 dedicated double-precision floating point registers for tar-
get and source data, and each register can also store single-
precision floating point data. A status and control register
records exceptions, rounding modes, result types, and whether
to enable or disable exceptions.

The PowerPC’s floating point unit gives good floating-point
performance. By separating the floating-point operations from
integer or branch operations, the overall pipeline speed is in-
creased and more instructions can be executed simultaneously.
The dedicated floating-point status and control register allows
for better floating-point control, as rounding modes can be spec-
ified and intermediate results can be calculated to any accuracy
before rounding. The use of two floating-point only units and
32 floating-point registers improves floating-point accuracy and
overall processor speed.[5][6]

3) Dispatch: Issue Queues, Reservation Stations, OOOE:
With an efficient dispatch strategy, a processor can be working
on many different instructions at the same time, and keep as few
functional units idle as possible. Three features the PowerPC
processors have used to facilitate dispatch are Issue Queues,
Reservation Stations, and Out-of-Order Execution (OOOE).

Reservation stations have been a part of the PPC architec-
ture since the 603. They basically allow an instruction to be
dispatched to its execution unit before all of its operands are
available. When the instruction has collected all of its bits and
is ready to be executed, it proceeds forward to the attached ex-
ecution unit. Reservation stations allow instructions to be exe-
cuted in the most time-efficient manner regardless of program
order: if one instruction is waiting for a load from memory, and
a later unrelated instruction just needs data from a register, then
a multiple-entry reservation station allows the second instruc-
tion to execute as soon as its operands come out of the register
file. It need not wait for the previous instruction to be executed
first.

The generalized case of the reordering of instructions that
reservation stations allow is called Out-of-Order Execution, ab-
breviated OOOE. Several other functional features of the PPC
processor facillitate OOOE, including issue queues, the instruc-

tion queue, and the commit/reorder units in the final stages of
the pipeline.

Issue Queues came about with the PPC 7450 or G4, pre-
sumably due to the expectation that stalls at reservation sta-
tions would cause more serious problems with the 7450’s longer
pipeline. If a reservation station is a waiting room, then the is-
sue queue is the line at the door to get in, allowing further flex-
ibility in reordering instructions but one further level removed
from the execution unit itself. Issue queues in the 7450 were
between 1 and 6 entries in length, and could issue 1 to 3 in-
structions from the bottom of the queue each cycle. [1][2]

4) Reorder Buffer: The Reorder Buffer lives in one of the
last phases of the pipeline, and repairs the effects of reorder-
ing instructions so that the programmer may assume that his
instructions are executed exactly in the order he wrote them.
The longer the pipeline and the more instructions there are “in-
flight” in the processor at a time, the more complicated the job
of the reorder buffer, as there is more chance for an instruction
to be executed far away from its original location in the pro-
gram.

B. Instruction Set

The PowerPC implements a RISC instruction set based on
IBM’s POWER instruction set. There are 188 total PowerPC
instructions that are grouped into integer instructions, floating
point instructions, or branch/control instructions. In addition,
there are 162 AltiVec instructions. Each PowerPC instruction
has a fixed length and instructions are aligned as 4-byte words.
There are five instruction forms (I, B, SC, D, and X) that contain
various combinations of thirty-five instruction fields. Instruc-
tions are big-endian by default, but the PowerPC can support
either big- or little-endian formats.

The PowerPC supports MIPS addressing modes (Register,
Base, Immediate, PC-Relative, and Pseudodirect) as well as
indexed and update addressing. Indexed addressing allows
data stored in a register to be used as an offset. For exam-
ple, the PowerPC supports the instruction lw $t1, $a0 +
$s3. Update addressing increments a base register to the start
of the next word as part of an instruction. This is useful for
improving loop performance.

Integer and floating point instructions provide operations
for arithmetic, comparisons, logic, rotation, shifting, loads,
and stores. Each instruction can take either 64-bit or 32 bit
operands. Double-precision floating-point instructions support
numbers from 2.2 × 10308 to 1.8 × 10308, and results can
be rounded towards the nearest integer, towards zero, or ±∞.
Branch and control instructions provide operations for branch-
ing, moving special purpose register data, memory synchro-
nization, cache management, trapping, and system calls.

As was previously discussed, the AltiVec instructions allow
for better performance for multimedia and signal processing by
combining similar streams of instructions into single instruc-
tions. The vector instructions have both integer and floating-
point operations similar to the non-vector integer and floating
point instructions. Each vector instruction uses 128 bit regis-
ters and support 16, 8, or 4 way parallelism.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 35

The PowerPC has notable non-standard instructions. The
floating-point multiply-add instruction combines multiply and
add into a single instruction. This allows for better floating-
point accuracy and faster execution, as the result is rounded
after both the add and multiply are complete. Additionally, the
load/store multiple instruction loads or stores up to 32 words at
once for more efficient memory access.

The instruction set is one of the reasons for the success of
the PowerPC. The special combined floating-point instructions
give better accuracy and performance for floating-point opera-
tions, and additional addressing modes improve address ranges
and make loop operations more efficient. The flexibility of
using either 64 or 32 bit operands for instructions allows the
PowerPC to maintain legacy code without hindering progress.
Special AltiVec vector instructions give the PowerPC improved
performance for graphics and signal processing applications
by lumping operations together for more efficient execution.
[5][6][7]

C. PPC v. MIPS and x86

There are many comparisons that can be made between the
PowerPC architecture and MIPS or Pentium x86 architectures.
The PowerPC is similar to MIPS, as both are RISC architectures
with fixed-length instructions. Notable differences between
the PowerPC and MIPS include the combined floating-point
multiply-add instructions, load/store multiple data instructions,
and indexed/update addressing modes. The PowerPC is also far
more complex, with a longer data path for superscalar pipelin-
ing with multiple processing units, out-of-order execution, and
branch prediction hardware.

These differences give the PowerPC better performance than
MIPS architectures. Floating-point operations are separate and
can thus be more accurate without slowing down other types of
operations, while more processing units and branch prediction
improves pipeline speed.

The Pentium x86 architecture differs greatly from the Pow-
erPC. Both architectures support integer, floating-point, vector,
and system instructions, but Pentium x86 instructions have vari-
able lengths and specialized operations. In addition, the x86 in-
struction set has had many changes due to the addition of new
SSE (streaming SIMD extensions) for recent Pentiums. With
regard to datapaths, the x86 pipeline has smaller, more numer-
ous pipeline stages and more specialized execution units. While
this increases clockspeed, it does not give a performance advan-
tage over shorter, simpler pipelines.

The PowerPC 970 can have up to 215 in-flight instructions,
compared to the Pentium 4’s 126. Because the 970 groups in-
structions in sets of five, while the Pentium tracks instructions
individually, the PPC processor can handle and re-order more
in-flight instructions with less hardware.

The PowerPC also has a smaller die size and better power
dissipation than the x86. The PowerPC 970 has an area of 61
mm2, and dissipates 42 W. The Pentium 4 has a die size of 131
mm2, and dissipates 68.4 W. The size and power differences
are related to processor complexity. The Pentium requires more
hardware for its complicated instruction set and long pipeline,
and thus generates more heat and has a larger area.

The x86 style requires more hardware to implement both its
legacy and its newer instructions. Longer x86 pipelines also
need better branch prediction to avoid the longer pipeline penal-
ties for incorrect branch predictions. However, as transistor
density improves, extra hardware may not be as much of hin-
drance, and the x86 CISC architecture may have faster perfor-
mance due to its efficient specialized instructions and execution
units. Floating-point accuracy is greater in the PowerPC, as
combined floating-point instructions with intermediate results
give better accuracy. The PowerPC’s longer history of 64-bit
support will likely have an advantage over new Pentium 64-
bit architectures, as current 32-bit programs will still run effec-
tively on 64-bit PowerPC’s. [8]

III. PPC: NOT JUST FOR MACINTOSH

The PowerPC processor as manufactured by IBM and Mo-
torola is used in many devices beyond the Apple Macintosh.
In fact there are probably more consumers using the PowerPC
in other devices than there are using them in Apple computers,
which make up only an estimated 3% of the personal computer
market. In contrast, a May 2003 Gartner Dataquest report stated
that the PowerQUICC (an extension of the PowerPC for com-
munications applications) had captured nearly 83% of the com-
munications processor industry. These include products such as
digital subscriber line (DSL) modems, DSL access multiplexers
(DSLAMs), wireless local area network (WLAN) equipment,
intelligent access devices (IADs), telecom switches, wireless
infrastructure, packet telephony equipment, small office/home
office (SOHO) equipment, and enterprise virtual private net-
work (VPN) routers, as well as printer, imaging and storage
applications.

If communications isn’t enough, since the mid-1990s and
the advent of the MPC500 (an embedded PowerPC micro-
controller), the 32-bit family of PowerPC microcontrollers has
found its way into a number of automotive applications, in-
cluding adaptive cruise control (ACC), electrohydraulic brak-
ing (EHB), direct injection, electronic valve control, hybrid and
fuel cell engines, spark ignition, transmission control, high-
end powertrain systems, and driver information systems (DIS).
According to Motorola (which has now branched off its semi-
conductor sector into the subsidiary Freescale Semiconductor,
Inc.), the market for PowerPC applications is only increasing.
They currently boast more than 10,000 customers worldwide,
and made $4.9 billion in sales in 2003.

In addition, the current Nintendo GameCube uses a Pow-
erPC processor (as will the next one), and perhaps more in-
credibly the Microsoft Xbox 2 set to ship in 2006 will be Pow-
erPC based. The personal digital video recorder TiVo, appear-
ing in more and more homes across America, is also based on
the PowerPC processor. Though the PowerPC was originally
designed to meet the needs of the Macintosh and the personal
computer industry, where perhaps its name is still best recog-
nized, it is clear that the PowerPC has a wide application be-
yond the Apple Macintosh. [13][14][15]

REFERENCES

[1] Stokes, Jon. “PowerPC on Apple: An Architectural His-
tory” Pt I. ars technica. Online. Available Dec 2004
http://arstechnica.com/articles/paedia/cpu/ppc-1.ars/1

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 36

[2] Stokes, Jon. “PowerPC on Apple: An Architectural His-
tory” Pt II. ars technica. Online. Available Dec 2004
http://arstechnica.com/articles/paedia/cpu/ppc-2.ars/1

[3] Stokes, Jon. “Inside the IBM PowerPC 970 Pt I: Design Philosophy
and Front End”. ars technica. 28 Oct 2002. Online: Available Dec 2004
http://arstechnica.com/cpu/02q2/ppc970/ppc970-1.html

[4] Stokes, Jon. “Inside the PowerPC 970 Part II: The Execution
Core” ars technica. 14 May 2003. Online: Available Dec 2004
http://arstechnica.com/cpu/03q1/ppc970/ppc970-1.html

[5] “PowerPC User Instruction Set Architecture, Version 2.01”. C IBM 2003.
[6] “IBM 970FX RISC Microprocessor User’s Manual, Version 1.4”. C IBM

2003-2004. 4 Nov 2004.
[7] “PowerPC Microprocessor Family: The Programming Environments for

32-Bit Microprocessors”. C IBM 2000. 21 Feb 2000.
[8] “Intel Architecture Software Developer’s Manual Vol. 2: Instruction Set

Reference”. 1997.
[9] “PowerPC G5 White Paper”. Apple Computer. January 2004.

[10] “The G5 Processor”. Apple Computer. Online: Available Dec 2004
http://www.apple.com/g5processor/

[11] Crandall, Richard E. “PowerPC G4 for Engineering, Science, and Educa-
tion”. Advanced Computation Group. Oct 2000.

[12] “Velocity Engine”. Apple Computer. Online: Available Dec 2004
http://developer.apple.com/hardware/ve/

[13] “From Somerset to SoC: Scalable PowerPC c©Systems-on-Chip (SoC)
Platforms”. Freescale Semiconductor, Inc. 2004.

[14] “PowerPC Processors”. freescale semiconductor. Online: Available Dec
2004 http://www.freescale.com/webapp/sps/site/homepage.jsp?
nodeId=018rH3bTdG

[15] “PowerPC”. Wikipedia: The Free Encyclopedia. 4 Dec 2004. Online:
Available Dec 2004 http://en.wikipedia.org/wiki/Powerpc

[16] Patterson, David. Computer Organization and Design: the Hard-
ware/Software Interface, 2nd ed. Morgan Kaufmann, Aug 1997.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 37

Abstract—The field of quantum computation is just beginning

to emerge as both a theoretical and experimental discipline. We
wish to introduce the concept of using quantum mechanical
systems to accomplish calculation more efficiently than by
classical methods. This paper covers some basic quantum
mechanical theory and its applications to computing with brief
examples of plausible quantum procedures to replace current
classical algorithms.

I. INTRODUCTION
HE technological centerpiece of all modern digital
computers is the transistor. While the semiconducting

properties that allow transistors to function are manifestations
of quantum-mechanical effects such as the band gap, these
devices, inasmuch as their realization of computing machines
is concerned, operate in the classical regime. The
fundamental difference between classical and quantum
computing paradigms lies in how we consider the nature of
the “state” of a system.

In classical computing the fundamental state of a digital
system consists of a finite number of bits. Bits take on any
number of manifestations (transistor, capacitor, flip-flop,
etc.), but when we abstract away from the hardware, we
consider a bit to be in one of two mutually exclusive states,
“on” or “off,” “true” or “false,” “1” or “0.” The state of an
entire computer could then be thought of as the compilation of
the individual states of all the bits on the computer.

In quantum mechanics, the “state” of a system can take on
a number of values, and its description represents everything
we can know about the system. In particular, quantum
systems can have discrete states similar to the classical analog,
but they are also allowed to be in a state that represents a
quantum superposition of any number of measurable states.
What this means is that a quantum system can literally exist in
a state that includes multiple measurable states
simultaneously.

This opens up an entirely new realm of computing
possibility, since quantum computers exploit what is known as
quantum parallelism. The computer can exist as a
superposition of multiple states that are of interest, and in
performing operations on the quantum state, the resulting state
is a superposition of all the results of that particular operation.
This allows a quantum computer, for example, to theoretically
examine an expansive search space in a single pass.

M. W. Curtis is with the Franklin W. Olin College of Engineering,

Needham, MA 02492 USA (phone: 617-780-9302; e-mail: mike@
students.olin.edu).

II. HISTORY & DEVELOPMENTS
Quantum computing is a relatively new field. While the

laws of mechanics that govern quantum computers were
discovered in the 1930s, the idea to build a quantum computer
is credited to the physicist Richard Feynman, who published a
paper in 1982 [1] suggesting the possibility of building a
quantum computer which could be used to simulate other
quantum systems.

The big leap forward occurred in 1985, when David
Deutsch of Oxford University published a paper [2] outlining
the theoretical construction of a universal quantum computer-
one that could be used as a general purpose computer, and not
just as a quantum simulator. His work extended and
generalized the work of Church [3] and Turning [4], who had
described the theoretical basis for universal classical
computers in the 1930s. Additionally, the formalization of so-
called reversible Boolean logic by Toffoli [5] and others was
critical to a complete description of a quantum computer (we
shall explore why in a later section).

Quantum computation, while theoretically interesting, did
not receive much initial attention because the quantum
algorithms suggested could only outperform classical
algorithms in a relatively limited set of obscure calculations.
In 1994, Peter Shor from AT&T Labs developed an algorithm
[6] which could be used in both discrete logarithm and prime
factorization calculations. Complexity theory placed all
previous classical algorithms in the class of problems know as
NP-Hard. Effectively this means that the time and space
required to solve them is not bounded by a polynomial of the
input size. In the case of prime factorization, the best known
algorithm scales exponentially with the input size.

To illustrate the scaling problem with exponential
algorithms, consider that when factored by classic computers,
a 129 digit number took approximately 8 months on 1600
workstations scattered around the world [7]. It would take the
same set of computers approximately 800,000 years to factor a
number with 250 digits. This complexity of the discrete
logarithm and prime factorization problem makes them the
basis of essentially all public-key cryptosystems in use today.

The Shor algorithm, however, when run on a quantum
computer can be executed in a time bounded by a polynomial.
What this means is that it could be used to crack any public-
key cryptosystem currently in use in what is considered to be
“computably reasonable” time.

The importance of such an application generated an
increased interest in quantum computation, and many
researchers are now attempting to build a working, general-
purpose quantum computer. In August of 2000, researchers at
the IBM-Almaden Research Center developed a 5-bit quantum

A Brief Introduction to Quantum Computation
Michael W. Curtis

T

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 38

computer programmed by radio-frequency pulses and detected
by nuclear magnetic resonance (NMR) instruments[8]. The
IBM team was able to implement a quantum procedure that is
part of the Shor algorithm called order-finding in a single step
on the quantum computer – a step that would have taken
repeated operations on a classical computer.

Current public-key cryptosystems, while vulnerable to
quantum algorithms, are still safe for now. Until a quantum
computer can be build with at least the number of qubits as
required to fit the number to be factored, the Shor algorithm is
useless and the factorization problem is still NP-Hard.
Theoretically, cryptographers could just increase the key sizes
to keep pace with developing quantum computers–however
this requires the identification of large prime numbers on
which to base their keys.

III. QUANTUM BASICS

A. Quantum States, Orthogonality, and Wavefunctions
A quantum state describes the properties of a quantum

system. The quantum state of a particular system is expressed
as a complex-valued function, known as the quantum
wavefunction, usually denoted ψ. A description of what
measurable quantities are available to us when we know the
wavefunction, while interesting from a quantum physics
standpoint, will not lend us much insight into how to use the
states for computation, and thus we will instead suffice to say
that the state of the system encompasses everything we are
allowed by the laws of physics to know about the system.

The quantum wavefunction, ψ, has certain properties
which are described by a complex-valued partial differential
equation known as the Schrödinger Equation. We shall not
discuss details, but instead suffice to say that in order to be an
acceptable wavefunction, ψ must be a solution to the
Schrödinger Equation. As a consequence of this, we know
that if we have two wavefunctions, ψ1 and ψ2, such that both
solve the Schrödinger Equation, then any linear combination,
α ψ1 + β ψ2, of the two solutions is also a solution, where α and
β are complex coefficients. A more convenient notation for
examining quantum computation instead of manipulating
wavefunctions directly, instead manipulates the unique states
that each wavefunction represents. We shall adopt bra-ket
notation to manipulate states for the remainder of this paper,
so it is useful to introduce this notation now. To denote the
quantum state we write the symbol x , called a “ket,” which

means the state labeled x, having the wavefunction ψx.
Consider two arbitrary wavefunctions, ψa and ψb. If ψa

cannot be formed by multiplying ψb by any complex constant
then ψa and ψb are said to be orthogonal. Furthermore, the
states corresponding to the wavefunctions, a and b are

said to be orthogonal. In fact, for any set of states (or
wavefunctions), the set is said to be mutually orthogonal if
none of the states can be formed by linear combinations of the
other states in the set.

If we perform an experiment to measure the state of a
system, then we find that we will always measure the system
to be in a discrete set of states called eigenstates. It turns out

that these eigenstates are the only possible states we can
measure the system to be in, and each eigenstate is orthogonal
to every other eigenstate. We can express every possible state
the system can be in as a linear combination of eigenstates.
However, even though the system can exist in a state that is
any linear combination of eigenstates, as soon as we measure
what state the system is in, we will always get just one
eigenstate as the measured value. The probability of
measuring any one particular eigenstate in a particular run of
the experiment is equal to the absolute value of the square of
the complex coefficient for that eigenstate in the system state.
For example, say we have a system with two eigenstates: call
them 0 and 1. The state of this system can be expressed as

10 βα + (1)

If we were to measure the system, then the probability of
obtaining a 0 would be 2α and the probability of measuring

a 1 would be 2β . Notice that this implies the relationship

122 =+ βα (2)

since the system can only be measured to be a 0 or 1.
Additionally, the act of measurement affects the state of the
system, and always leaves it in an eigenstate. What this
means is that if we were to measure the system described
above, the first time we measure we don’t know whether we
will get a 0 or a 1, but once we measure it once, every time we
measure it subsequently, we will always get the same result as
the first measurement. The act of measurement itself is said to
have collapsed the wavefunction of the system to one of the
eigenstate wavefunctions.

Such a system as described above is called a quantum bit,
or qubit.

B. Qubits and Quregs
Just like in the classical analog, if we wish to store a piece

information more complex than the answer to a yes-or-no
question, then we arrange our qubits into quantum registers, or
quregs. A size-n qureg is simply an ordered group of n
qubits. Consider, for example, a 2-qubit qureg. We can
describe its state as follows:

11100100 δγβα +++ (3)

with

12222 =+++ δγβα (4)

We could therefore think of describing the state of a qureg

as a length 2n vector with complex components, each
representing the complex amplitude of all the possible
eigenstates. This vector notion will be important when we
begin to consider the transformations of the quantum state that
are the essential workings of quantum computing.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 39

C. Entanglement and Product States

10
2

101
2

1
+ (5)

Consider the state of a 2-qubit qureg in (5). Notice that

each eigenstate has probability of ½ if we were to measure the
system. What would happen if we measured only one of the
qubits? Since the two eigenstates for the entire system are
01 and 10 , we know that we should be equally likely to

measure a 0 or a 1 in a single qubit. However, when we
measure the bottom qubit, we immediately know that the top
qubit must have the opposite eigenstate with probability 1. In
measuring the bottom qubit, we forced not only it into an
eigenstate, but the top bit as well. This is because as an effect
of the state of the entire system the states of the individual bits
were linked to one another. This is called entanglement.

()11100100
2
1

+++ (6)

If, however, we have a system state such as (6), consider

what happens when we measure the bottom qubit. If we
measure a 0 then we leave the system in the state (7) and if we
measure a 1 then we leave the system in the state (8).

()1000
2

1
+ (7)

()1101
2

1
+ (8)

In either case, we still are equally likely to measure a 0 or

1 in the top qubit. In fact, this is true whether or not we took
the first measurement. This means that the bottom and top
qubits are not entangled. We refer to this arrangement as a
product state, since the overall system is simply the product of
the states of the two subsystems. This is important in
quantum computation, since we may want to allow qubits
within quregs to be entangled with one another, but we
definitely do not want quregs to be entangled with other
quregs on our quantum computer since this would mean that
what we do to one qureg would affect other quregs on our
system.

IV. ADVANTAGES OF QUANTUM COMPUTING
The laws of classical mechanics explain most of the

physical effects that we can observe on length scales larger
than a few nanometers (on the order of atom radii). However,
at length scales smaller than that, quantum mechanical effects
take over and attempting to tackle these problems with
classical laws produces wildly inaccurate results. The current
“gold standard” in the semiconductor industry involves laying
down features on semiconductors which are sized on the order
of 90 nanometers (nm) [9]. As we continue to shrink circuits

down further and further, quantum effects become more and
more important, and we will eventually reach a point where
we cannot simply assume that a transistor operates in the
classical régime of having discrete “on” and “off” states. In
order to continue to miniaturize, we cannot ignore quantum
mechanical effects, and it may be significantly more difficult
to build a classical computer on tiny length scales than to
build a quantum computer.

Another interesting property of quantum mechanical
processes is a consequence of the requirement of reversibility.
In order to do calculations using a quantum system, the system
must be manipulated in a way that is absolutely reversible,
otherwise an effect known as decoherence occurs and
information is lost to the system. This means that any
transformation on the system can in theory and in practice be
run in reverse (“uncomputing”). The second law of
thermodynamics guarantees that any physically reversible
process dissipates no heat. Unlike classical computers which
necessarily dissipate heat as a consequence of having to move
electrons through wires with non-zero resistance to charge and
discharge the field effect transistors, quantum computation
could in principle be performed with no loss of energy as heat.

Algorithms that have been shown to be more efficient
when performed on a quantum computer share an important
feature in common. They are designed to exploit quantum
parallelism. Since a system can be prepared as a superposition
of multiple states, when an operation is performed on the
system the operation affects every state in the superposition
simultaneously.

Feynman first proposed quantum computers as a useful
way to simulate other quantum systems. While classical
computers can be used to simulate quantum systems, when
dealing with complex systems with many eigenstates, the
classical computer must calculate probabilities for every
possible eigenstate. The total number of eigenstates of a
system with n qubits is 2n. Suppose, for example we could
represent our system with 128 qubits. This would mean there
are approximately 1038 eigenstates of the system. A quantum
computer could theoretically manipulate this system as easily
as a classic computer manipulates a 128-bit number.
Additionally, even for small systems a classic computer must
be able to simulate randomness to handle the probabilistic
nature of measurement. True randomness is in fact very hard
to simulate, and thus classic computers would be limited by
the quality of their random number generators.

Additionally, even though quantum computers can be
operated with quantum superpositions as their system states,
they certainly do not have to be. By simply preparing quregs
in eigenstates, we can use them as classical registers. A
quantum computer is capable of doing anything a classical
computer can do, with one caveat: all operations on a
quantum computer must be reversible. This is no problem if
the computation we wish to execute has a unique output for
every input, a so-called one-to-one function, however, if the
computation is not one-to-one we need to make a slight
modification to make the operation reversible. We can
construct a pseudo-classical operation by having the
operation pass-through the input value as well as the

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 40

computational output–this allows us to be able to reverse the
process and go back to the initial state.

V. COMPUTING WITH QUANTUM SYSTEMS
Recall the notion of describing the quantum state of a

system as a 2n-dimensional vector with complex entries. The
vector space corresponding to this state vector is called the
Hilbert space of the system. Also recall that the sum of the
probabilities of measuring each of the eigenstates is 1. The
probabilities are just the squares of the entries in the state
vector. This means that if ν is the state vector, with entries νi,
then

12 =∑
i

iν (9)

This is the same thing as saying that the magnitude of the

state vector is 1. Visualizing even a simple system such as a
single qubit is quite difficult, since each complex number has
two dimensions, a real and an imaginary. This means that
visualizing the Hilbert space of a single qubit, which has two
complex entries, would require four dimensions. Remember
that the state vector always has a magnitude of 1, so it’s only
the direction of the state vector that tells us about the system.
The projection of the state vector on a particular complex
plane in the Hilbert space corresponds to the complex
amplitude of the eigenstate associated with that plane. This
means that if the state vector is ever incident with one of the
planes in the Hilbert space, then the probability of measuring
that eigenstate is 1; in other words, the system is in that
eigenstate.

Quantum computation is accomplished by means of
transformations on the state vector. Any of the allowed
transformations can be expressed as a 2 n x 2n complex valued
matrix. If ν0 is the initial state of the system, then the state of
the system after the transformation is simply

01 νν U= (10)

where U is the transformation matrix. The class of allowable
transformation matrices are called unitary matrices, or unitary
transformations. They have the property

nIUU =† (11)

where U† is the conjugate transpose of U [10]. The conjugate
transpose of a matrix is obtained by taking the element-by-
element complex conjugate of the transpose of the matrix. In
is the identity matrix. This means that

00
† νν =UU (12)

In other words, U† is the reverse operation of U. This is

important because we require that all of our quantum
operations be reversible. For reasons that are beyond the

scope of this paper, we also know that unitary transformations
will not affect the magnitude if the state vector, which is
important since the state vector must always have a magnitude
of 1. We can think of unitary transformations as rotations of
the state vector in the Hilbert space of the system.

We can use unitary transformations to represent any
operation we would like to use in our quantum computer. For
example, say we have a qureg that contains some value x (this
means that it is in a single eigenstate representing x). Suppose
we wish to calculate the value x + 4. We first determine the
unitary transformation for “add four,” called U+4, and then
apply the transformation to the qureg. We then measure the
contents of our qureg and obtain our answer. Now suppose
that our qureg is in a superposition of the values x and y. If
we apply U+4 to the qureg now, then the final state will be a
superposition of the values x + 4 and y + 4. When we measure
the contents of the register we will get either x + 4 or y + 4
with probabilities equal to the probabilities associated with x
and y in the initial superposition. Also, as long as we do not
measure the qureg we can always apply the inverse
transformation, U-4 (obtained by taking the conjugate
transpose of U+4) to arrive back at our initial superposition of
x and y. If we were to apply the inverse transformation after
we have already measured the qureg then the result would be
either x or y, depending on the result of the measurement–the
quantum superposition will have disappeared.

We can build up complex transformations from more
simple ones the same way that in classical computing complex
Boolean functions are built from simple ones such as AND,
NOT, and OR. We could imagine networks of simple
quantum gates that represent transformations in the same way
that networks of Boolean gates work in classical computers.
There are a few restrictions, however. According to quantum
theory, information can neither be created nor destroyed, and
thus quantum circuits must be reversible. This has several
consequences when attempting to construct a network of
quantum gates. First of all, a quantum network must have the
same number of inputs as outputs. Additionally, the “wires”
that connect the various gates cannot fork or terminate. These
restrictions also apply to the gates themselves: a quantum gate
must be reversible and thus it must have the same number of
inputs as outputs [11].

An example of a quantum gate is the one-input “quantum
NOT” gate. This gate exchanges the coefficients on the two
eigenstates, as seen in Fig. 1.

Fig. 1. The quantum NOT gate.

Notice that if the qubit is in an eigenstate (corresponding
to a classical 0 or 1) then the gate works exactly as we expect
a classical NOT gate to.

Just as in classical Boolean logic, there is a reversible gate
that is universal. This means that there exists a circuit using
only this gate that can calculate any Boolean function. This

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 41

universal gate is called the Toffoli gate, and was proposed in
1980 by its namesake Tommaso Toffoli[5]. Toffoli also
described a process by which any non-invertible function
could be made invertible by adding additional sources (input
constants) and sinks (ignored outputs) to the inputs and
outputs. We shall suffice to say that using only Toffoli gates
it is possible to construct any unitary transformation that
operates on a qureg of any size.

VI. QUANTUM COMPUTER ARCHITECTURE
The basic idea of quantum computation mirrors the idea of

computation on a classical computer: we prepare the system
state according to the input to the computation we will
perform, execute one or more unitary transformations that
represent the calculation we wish to do, and then measure the
system state to receive our output. Complexity arises because
the output of the unitary transformations may be a
superposition of more than one eigenstate, and thus when we
measure the output we only get information about a single
eigenstate of the output state.

Fig. 2. A quantum feed-forward procedure consisting of a set of unitary
transformations executed in sequence.

One model of how a quantum computer might work is a

classical-quantum hybrid architecture which is essentially a
classical computer wrapped around a quantum computer. We
input a classical program into the computer which is allowed
in to evoke a quantum procedure that returns a classical result
(i.e. the result of measuring the quantum state at the end of the
procedure). This means that the quantum procedure can
return a different result each time it is evoked. Such a set-up
is often termed a quantum oracle. An oracle is essentially a
black-box procedure. It takes an input and returns an output,
and we are not given access to information about how the
oracle operates internally. The idea is that there are certain
calculations that can be done more efficiently by the quantum
oracle than by the classical computer, so the classical
computer offloads those procedures to the oracle, which,
when the final quantum state is measured, returns a classical
result. Note that the “classical computer” could in fact just be
part of a quantum computer operating in the classical regime.

Fig. 3. A block diagram of the operation of a quantum oracle in a classic
program.

A more sophisticated approach would be instead of giving

the programmer access to certain predefined quantum
routines, a basic quantum instruction set could be defined.
Each instruction would correspond to a unitary transformation
on the machine state of the quantum computer, with the
addition of two extra instructions: RESET and MEASURE.
These two instructions are not unitary, nor are they reversible.
The RESET instruction resets the qubits on the quantum
computer to the “0” eigenstate, and MEASURE takes a qureg,
performs the measurement, and records the results in a
classical register. This design would allow programmers to
use classical control structures to control quantum algorithms.

Fig. 4. A Typical non-classical algorithm[11]

Fig. 4 shows the flow control for a typical non-classical

algorithm consisting of a simple search loop. Suppose we
wish to search for a solution to a certain problem by
exploiting quantum parallelism. We could start by initializing
a qureg of sufficient size to a superposition of all the possible
solutions we wish to search. Remember that with n qubits we
can create a superposition of up to 2n states. We could then
define a pseudo-classic function that evaluates whether a
particular state is a solution and stores this in an extra qubit.
We would then have a quantum superposition of the entire
search space with whether or not each state in it is a solution–
the problem is then how to get any useful information out of

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 42

this superposition. If we measure the qureg, we will get a
state and whether or not that state is a solution, but since each
state has equal quantum amplitude, this is essentially no better
than picking an end state at random and classically evaluating
whether or not it is a solution. If the space is large and there
are few solutions then this is unlikely to be a good way to find
the solution.

In order to be effective, our transformation must be able to
not only evaluate whether or not something is a solution, but
also affect the quantum amplitudes of the various states such
that solution states become reasonably likely to be measured
by our system.

The Shor algorithm [6] for prime factorization is a mixture
of both quantum and classical operations. It works by using
quantum parallelism to quickly evaluate the periodicity of a
function which can be shown to be related to the factors of the
input number. We’ll follow a simple example that appears in
[12]. Say we wish to factor the number 15. We first choose
an arbitrary number between 0 and 15, say, 7, and define a
function f(x) = 7x (mod 15). It has been shown that the period,
r, of our function is related to the factors of 15. The first 8
values of f(x) are 1, 7, 4, 13, 1, 7, 4, 13, … for x = 0, 1, 2, 3, 4,
5, 6, 7, … We can easily see that r = 4. r is related to the
factors of 15 as the greatest common divisor of 15 and 7r/2 ± 1.
In this case 74/2 + 1 = 50, and indeed the greatest common
divisor of 15 and 50 is 5 (which is a prime factor of 15). The
Shor algorithm works by using quantum parallelism to
evaluate f(x) for a large number of values in one fell swoop,
and then performs a unitary transformation known as the
quantum Fourier transform, which is related to the discrete
Fourier transform. By measuring the system in this state,
along with a little bit of extra mathematical manipulations the
Shor algorithm is able to obtain, with high probability, the
periodicity of f(x). Then, using classical algorithms it can find
the greatest common factor in polynomial time. The complete
mathematical description of the algorithm is beyond the scope
of this paper, and the reader should consult [6] for further
details.

VII. CONCLUSION
It remains to be seen whether or not quantum computers

will become a reality in the near term. However, much in the
same way that classical computing had its theoretical basis
firmly established by people such as Alan Turing far before an
actual general purpose digital computer was built, many
quantum theorists are working hard at establishing the
foundations that will make quantum computing a reality once
technological achievements are in place. Additionally,
researchers at facilities all around the world are hard at work
to develop the physical devices that can be used to implement
the world’s first useful quantum computer.

VIII. SUGGESTED FURTHER READING
In addition to the references explicitly listed in the paper,

those interested in further reading may wish to consult David
Deutsch’s paper [13] which describes additional computations
that can be performed more efficiently on a quantum computer

than a classical one, or Bennett and Shor’s paper on Quantum
Information theory [14].

REFERENCES
[1] R. P. Feynman, "Simulating Physics with Computers,"

International Journal of Theoretical Physics, vol. 21, pp. 467,
1982.

[2] D. Deutsch, "Quantum Theory, the Church-Turing Principle and
the Universal Quantum Computer," Proceedings of the Royal
Society of London, Series A, vol. 400, pp. 97-117, 1985.

[3] A. Church, "An unsolvable problem of elementary number theory,"
American Journal of Mathematics, vol. 21, pp. 345-363, 1936.

[4] A. M. Turing, "On comutable numbers, with an application to the
Entscheidungsproblem," Proc. London Math. Soc. Ser. 2, vol. 442,
pp. 230-265, 1936.

[5] T. Toffoli, "Reversible Computing," in Automata, Languages and
Programming, d. Bakker and v. Leeuwen, Eds. New York:
Springer-Verlag, 1980, pp. 632-644.

[6] P. W. Shor, "Algorithms for Quantum Computation: Discrete
Logarithms and Factoring," Proc. 35th Annual Symposium on the
Foundations of Computer Science, pp. 124-133, 1994.

[7] S. L. Braunstein, "Quantum computation: a tutorial," vol. 2004,
1995.

[8] K. Bonsor, "How Quantum Computers Will Work," in How Stuff
Works, vol. 2004: HSW Media Networks, 2004.

[9] M. Chang, 2004.
[10] "Unitary matrix," in Wikipedia: Wikimedia, 2004.
[11] B. Ömer, "Quantum Programming in QCL," in Institute of

Information Systems. Vienna: Technical University of Vienna,
2000.

[12] A. Barenco, A. Ekert, A. Sanpera, and C. Machiavello, "A Short
Introduction to Quantum Computation," in La Recherche, 1996.

[13] D. Deutsch and R. Jonzsa, "Rapid Solution of Problems by
Quantum Computation," Proceedings of the Royal Society of
London, Series A, vol. 439, pp. 553-558, 1992.

[14] C. H. Bennett and P. W. Shor, "Quantum Information Theory,"
IEEE Transactions on Information Theory, vol. 44, pp. 2724-2742,
1998.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 43

Beauty and the Beast: AltiVec and MMX Vector
Processing Units

Drew Harry
Olin College of Engineering

Needham, MA 02492
Email: drew.harry@students.olin.edu

Janet Tsai
Olin College of Engineering

Needham, MA 02492
Email: janet.tsai@students.olin.edu

Abstract— Vector processing units are becoming a popular
way to handle modern multimedia applications like DVD en-
code/decode, and streaming video at low latency. This paper
presents the general problem that vector units address, as
well as two current solutions. We compare and contrast the
Motorola AltiVec system and Intel’s MMX architecture, including
discussions of the specific instruction sets, the way they interact
with the processor, exception handling, and other topics.

I. INTRODUCTION

Computers are now heavily marketed by their performance
in applications like MP3 encode/decode, DVD playback, and
communication. Users expect reliable, hiccup free streaming
of multimedia data, which require significant calculations at
low latency. Luckily, all of these applications are similar in
significant ways; the same algorithm is being applied over and
over again to a large data set and the implementation must
have low latency. There are also some kinds of operations
that are common between algorithms that can be imple-
mented in hardware to further increase speed. Because of this
commonality, it made sense for CPU manufacturers to build
modules specifically for handling these kinds of widespread
high-performance needs. These modules are commonly called
Vector Processing Units (VPU).

All modern CPUs from AMD, IBM, Motorola, and Intel
now contain vector processing units. These functional blocks
provide, in some way or another, the ability to do the same
operation to many values at once. In general, these units are
comprised of two major parts: registers and ALUs. Because
VPUs have the same 32 bit instruction words as the main
CPU, the VPU needs some way to address larger blocks of
data with the same 6 bits it usually uses to address normal
registers. Typically, this is done by creating a wider register
file. For example, instead of the usual 32 x 32 register in
MIPS processors, the AltiVec VPU has a 32 x 128 register
and the Intel MMX VPU has eight 64 bit registers. The
other main element of the VPU is the vector ALU, which
performs similar operations to normal ALUs, but with many
more computations, parsing the larger registers into smaller
blocks for parallel processing.

This paper presents a comparison of two of the leading
implementations of vector unit processing; Intels MMX archi-
tecture and Motorola/IBMs AltiVec technology. These imple-
mentations provide interesting insights into the design goals

of each team, and the restrictions the processor architecture as
a whole put on the processor designers.

II. ALTIVEC

AltiVec was designed by Motorola to add high performance
vector processing to its PowerPC line of processors. Unlike
the Pentium 3, there was plenty of space on the G3 die for
more hardware, so Motorola was able to design the AltiVec
unit from the ground up as an encapsulated vector processing
unit. Apple Computer is the most notable buyer of chips
with AltiVec technology, and all processors since the G3 have
included it.[1]

In modern implementations of AltiVec, the VPU promises
a throughput of one vector permute operation and one vector
ALU operation per cycle, including loading from registers,
executing, and writing back to registers. AltiVec maintains a
separate vector register file, which must be loaded and stored
to independently of the main register file.

The vector register file contains 32 registers, each 128 bits
long four times as wide as the registers normally found in
a 32 bit processor. Motorola considers a word to be 32 bits,
thus each of these registers can be addressed as a series of 4
words, 8 half-words, or 16 bytes, as shown in figure ??. As
in a MIPS 32 bit CPU core, all the instructions operate on
some number of registers (one to three) and write the result to
another register. The instructions themselves specify whether
to treat the 128 bit registers as 4 words, 8 half-words, or
16 bytes. This decision is handled by the compiler. The C
function vec add() is overloaded for all of the fundamental
data types, letting the compiler handle the decomposition
into the appropriate vector instruction, eg add signed bytes
(vaddsbs), add signed half words (vaddshs), or add signed
words (vaddsws). In this way, the vector unit doesnt need to
keep track of how the 128 bit registers are divided into smaller
pieces of data, simplifying the hardware.[2] [3] [4]

When an instruction is passed to the AltiVec scheduler, the
AltiVec unit behaves like the register fetch, execution and write
back units combined. In general, it takes one cycle to read from
the AltiVec registers, pass the data to the vector ALU, compute
the result, and write back to the register file. The AltiVec
unit cant throw exceptions, guaranteeing that every operation
will complete in a known number of cycles. This is important
in streaming data applications, for which AltiVec is most

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 44

Fig. 1. The different levels of 128 bit addressing available to AltiVec
instructions.[3]

useful. To make this possible, the AltiVec unit needs a default
behavior for events that would otherwise trigger exceptions
in a normal ALU. The most common example of such an
exception is overflow. Because the AltiVec unit is frequently
used in audio/video/image applications, its not important that
overflows be handled in a special way its generally fine
for values outside the expected range to be saturated to the
maximum or minimum value. Thus any overflow event is
handled by returning the appropriate saturated result. For
example, attempting to add 7 (0100) + 9 (0101) in a 4 bit
system would usually cause an overflow and wrap around to a
negative number. In AltiVec calculations, overflows saturate,
returning 15 (1111) for any operation that overflows in the
positive direction and (0000) for operations overflowing in
the negative direction.

The AltiVec instruction set provides 163 new instructions to
take advantage of the AltiVec hardware. This is a deceptively
large number. As discussed above, each basic operation (add,
subtract, multiply, divide, etc) has at least three versions one
for words, one for half words, and one for bytes. Beyond the
basic arithmetic instructions, the ISA also includes instructions
for operations like averaging, finding the min/max of two
arguments, and bitwise logic. There is also a hodge-podge
of instructions that do things like A · B + C, 2A, log2 A,
1/A, rounding, etc (where A, B, C are vectors). All of
these operations are handled by the main vector ALU. One
instruction of these types can be issued per cycle. Simple
instructions are executed in the same cycle they were issued.
For more complex instructions like multiply and divide, the
process is pipelined. This ensures a throughput of one, though
the latency will be 3 or 4 cycles. Regardless of complexity,
one vector ALU instruction can be issued per clock cycle.

There is also a class of instructions that permutes the inputs
to create a new output vector composed of parts of each input
vector. For example, the Vector Merge High Byte (vmrghb)
instruction takes the 8 high bytes of input A and interleaves
them with the 8 high bytes of input B, ignoring the 8 low bytes
of each input (see figure II). There are also more complicated
rearrangement instructions like vector permute (vperm). As
shown in figure II, vC specifies which element of each of the
two input vectors is assigned to each element of the output
vector. Like the simple arithmetic vector ALU instructions,
all permute operations take one cycle to execute. Also handled

by the vector unit are packing and unpacking operations, in
which one data type can be converted into another. This is
useful when a program needs higher precision in intermediate
calculations to avoid rounding errors in the results. Because
these kinds of permutation operations are so common, AltiVec
makes the vector permute module independent from the vector
ALU module, allowing the instruction scheduler to issue both
a permute and ALU instruction every cycle.[3]

Fig. 2. Example of a specific permutation instruction, commonly used in
packing and unpacking.[3]

Fig. 3. More general permutation instruction, for flexible rearrangements
including substitutions, custom interleaving, sorts, etc.[3]

With the creation of these new vector instructions, it became
possible to process data in new and more efficient ways.
To take advantage of this, programmers must write high
level code in languages like C, using specific AltiVec APIs.
[6] [2] The API provides some abstraction, like overloading
functions to force the compiler to pick instructions based on
argument types, but vector coding requires low level design.
Because of this, few general software developers actually
write code for the AltiVec unit. For Apple computers, it turns
out this is okay. Because of Apples broad standardization of
Audio, Video and GUI APIs, as long as the OS and its main
multimedia applications (Quicktime, iTunes, iDVD, CD/DVD
burning, etc) take advantage of the AltiVec unit, it is still
extremely useful to the end user in reducing computation
time and ensuring low latency media performance. Also, given
the Macs traditional success in graphic arts markets, popular
applications like Photoshop and Illustrator rewrote parts of
their core to take advantage of AltiVec functionality. Between
OS, its core applications, and the largest 3rd party applications,
AltiVec is sufficiently useful to justify its continued inclusion
in Motorola and IBM processors.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 45

Fig. 4. High level schematic of the AltiVec pipeline. Note the pipeline depth
for complex arithmatic instructions, and the ability to issue one instruction of
each type per cycle.[5]

III. MMX

“MMX is rumored to stand for MultiMedia eXtensions or
Multiple Math eXtension, but officially it is a meaningless
[acronym] trademarked by Intel” [7]. Intel’s primary goal in
adding MMX to Pentium processors was “to substantially
improve the performance of multimedia, communications, and
emerging Internet applications.”[8] The original design team
met with external software developers to understand what
was needed from Intels side before they began developing
the MMX architecture.[9] Their findings indicated that MMX
could help the most in computationally time consuming rou-
tines involving operands which were small native data types
like 8 bit pixels or 16 bit audio samples.

“MMX technologys definition process was an outstanding
adventure for its participants, a path with many twists and
turns. It was a bottom-up process. Engineering input and
managerial drive made MMX technology happen.”[8]

At the same time, MMX design was bound by many
constraints relating to backward compatibility. To ensure that
any programs written with MMX instructions would still run
on all existing machines, MMX could not introduce any new
states or data registers (no new warning flags, interrupts or
exceptions). Furthermore, no new control registers or condition
codes could be created, either.[5] Bound by these constraints,
MMX was forced to use the same physical registers that
contain Floating Point (FP) data as the main MMX data
registers. In doing so, the requirement that MMX instructions
have to run with existing operating systems and applications

was satisfied, as existing programs already know how to deal
with the 80-bit FP state and no significant new architecture
needed to be added.[8] Avoiding large hardware additions
was especially important because the Pentium die was already
extremely cramped.

Since its introduction in 1997, programs requiring MMX
instructions have two versions. The program checks for the
presence of MMX hardware and executes the appropriate code.
All programs using MMX code must also contain non-MMX
backup code, which is called if the processor doesnt have an
MMX unit. While this does require programs to have duplicate
instructions, because MMX is meant for small computationally
intensive code elements, research estimates that the addition of
MMX code causes less than a 10% growth in program size.[9]

MMX introduced four new data types to the Intel Architec-
ture (IA). Since Intel processors already had 64-bit datapaths,
the width of the MMX data types was also set at 64 bits.
The four data types are different divisions of the 64 bits, so
each unit of 64 bits could be 8 packed bytes, 4 packed 16-bit
words, 2 packed 32-bit doublewords, or one 64-bit quadword.
Full support was defined for the packed word (16 bit) data
type, as based on Intels research into the outside world the
main data type in many multimedia algorithms is 16 bits.[8]
Furthermore, as bytes are the second most frequently used
data type, 16 bits was a good higher precision backup for
byte operations. Note that this is slightly different than the
AltiVec vocabulary (see Figure II).

The first set of MMX instructions contained 57 new
operations, all with the general format of the x86: MMX
Instruction mmreg1, mmreg2.[10] This format is no-
table because it doesnt include an explicit destination register.
Every instruction in the MMX set operates on the contents
of mmreg1 and mmreg2, and stores the result in mmreg1.
This is necessary because of the relatively cramped register
situation, but makes for more verbose code to compensate
for this limitation. With the exception of multiply, all MMX
instructions execute in only one cycleas one Intel programmer
puts it, “we made them fast”.[9] Instructions involving mul-
tiplication have a latency of three cycles, but multiplication
is pipelined so it is still possible to have a throughput of one
cycle per SIMD operation using MMX. It is interesting to note
that the first MMX instruction set had no divide or inverse
functionality and only two types of multiply.[10] The first
performs four 16 bit by 16 bit multiplies and, depending on
the instruction, stores the low or high order parts of the 32-bit
result in the destination register. In this type of multiply, both
the input operands and the results are packed 16-bit data types.
The second type of multiply is multiply and add: the elements
from two 16-bit operands are multiplied bitwise, generating
four 32-bit results which are then added in pairs and then
added again to generate the final packed 32-bit doubleword.
This instruction actually performs four multiplies and two 32-
bit additions, but is only one instruction. See figure III for a
graphical representation of the process.[8]

Similar to the AltiVec, MMX has no overflow or under-
flow tags, instead, instructions specify whether the arithmetic

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 46

Fig. 5. Diagram of Multiply-Add instruction. The instruction is actually 6
different micro-operations; four multiplies and two additions.[8]

should be saturation or without saturation. Fourteen of the
57 MMX instructions are for adding and subtracting signed
and unsigned bytes, words, and doublewords with or without
saturation. A similar number of instructions are needed to
provide unpacking and packing ability for each of the data
types with or without saturation. As with the AltiVec, this
unpacking and packing ability is commonly used to maintain
precision calculations and achieve an accurate result. MMX
also has instructions to shift and rotate words, double words,
and quad words within each register, as well as having instruc-
tions to move doublewords and quadwords between registers.
Comparisons between bytes, words, and doublewords to de-
termine equality count for three instructions, and greater than
comparisons for byte integers, word integers, and doubleword
integers account for three more. Standard logical instructions
are implemented bitwise, and there is one instruction which
resets the tag of the FP/MMX registers to make them appear
empty and thus ready for any new FP or MMX operations.
[10]

While sharing the floating point registers for MMX com-
mands enabled Intel developers to achieve their goal of back-
ward compatibility and saving space on the die, it brought up
several other issues involving conflicts between the FP data
type and MMX data types. Assembly code can directly address
both MMX and FP registers, as two sets of names exist for the
same set of physical registers, leading to potential problems
in usage.

When used to store FP values, an 80-bit FP register contains
the instruction or value in the 64 lowest order bits, while
bits 64-78 hold the exponent field and bit 79 contains sign
information. When used as an MMX data register, the 64 low-
order bits contain the instructions while the exponent field
(64-78) and sign bit (79) are all set to 1. This makes any
MMX value in a FP register NAN or infinity when viewed
as an FP value instead of an MMX, thereby helping reduce
confusion regarding using the two data types in the same
physical space.[8]

Additionally, FP registers are accessed in a stack model
format, whereas MMX registers are random access. These
problems, combined with the argument overwriting discussed
earlier create significant extra work for MMX programmers.
In general usage, most applications rarely have the need to
intersperse FP and MMX instructions, so the double-usage
of the registers can be avoided. In this way, MMX is con-
sidered an extension of the floating-point instructions, not a

new independent extension. To further alleviate this problem,
MMX instructions can also use the general-purpose registers
for a total of 16 registers for MMX instructions. Increasing
the number of MMX registers makes register allocation much
more simple and saves many instances of having to write to
memory. [11]

However, the lack of dedicated registers and the necessity
for backwards compatibility severely limited the MMXs us-
ability and complicated the development process. [12] For
example, in choosing the opcodes for the 57 new MMX
instructions, developers had to take into account not only
the opcodes in use, but also any software that may have
relied on illegal opcode fault behavior of previously undefined
opcodes.[13] While limiting, this type of in-depth considera-
tion of the existing architecture did not stop Intel from moving
forward in increasing the functionality of the VPU. MMXs
introduction in 1997 was followed by the addition of SSE
instructions which were not constrained by using the existing
floating point registers.[14]

IV. CONCLUSIONS

Without the constraints of back-compatibility and limited
die space, the AltiVec processor had the freedom to create
a solid standalone vector processing unit. This freedom of
development extended to the programmers writing code for the
AltiVec, as instead of requiring programs to recognize and pro-
vide working alternatives for processors without MMX units,
AltiVec programs had no such restrictions. In programming for
MMX technology, software developers had to be contentious
of issues like interspersing or transitioning floating point
instructions with MMX instructions. MMX also restricted the
programmers by providing a limited amount instructions; 57
compared to AltiVecs 163. The greater number of AltiVec
instructions simply increased the flexibility in programming
for AltiVec and made AltiVec easier to use.

The many disadvantages to MMX were seen clearly by the
community upon its introduction in 1997. While Intel later
recouped somewhat with the introduction of SSE instructions,
AltiVec was successful and widely used following its introduc-
tion in the Apple branded G3 in 1999. Today, AltiVec VPUs
appear in both the new G4 and G5 chips from IBM, and are
also commonly used in embedded CPU applications.

Despite the inherent disadvantages of MMX, the simple
fact that it added instructions and functionality to the existing
IA increased the overall processor performance for most
applications. The implementation of a VPU greatly speeds up
computation-intense operations on small data types in both
the MMX and AltiVec. The speedup is dependent on the
operation that needs to be done, as MMX and AltiVec are
SIMD (single instruction, multiple data) instruction sets: for
instance, if multiple instructions need to be implemented on
multiple data streams, adding SIMD functionality will not
help.

In modern-day processors, the VPU is just one module on
the die to optimize processor performance in many different
instruction and data scenarios. While MMX and AltiVec were

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 47

obviously imperfect in their architecture, they certainly laid
the path for exciting new VPU implementations like SSE and
AMD’s 3DNOW! in applications as varied as the Sony/Toshiba
Emotion Engine[15][16] to Sun’s Tarantula.[17]

V. FUTURE DIRECTIONS

As the demand for high bandwidth multimedia increases,
work on vector unit implementations has become more im-
portant. Competing architectures that provide some of the
same functionality, like VLIW and superscalar architectures,
have serious disadvantages. As the name implies, VLIW
involves the non-trivial task of creating a new set of very
long instruction words. This requires extensive rewrites of
compilers, as well as a new instruction set for programmers
to master. Superscalar architectures attempt to find parallelism
within regular assembly code, and then take advantage of it
using multiple data paths. This shifts the burden of detecting
parallelism from the programmer and compiler to the hard-
ware, creating significant power use issues. Faced with these
alternatives, vector units are a fantastic alternative.[18] They
operate in parallel to existing datapaths, and can be employed
or ignored depending on the program leading to efficient use of
power. Because VPUs have large registers, no change in the
basic instruction length is necessary, making the compiler’s
job relatively easy. Thus it is convenient for computers and
other high performance devices to rely more and more on
VPUs. Recent work in the field has focused on topics like
combining VPUs to provide higher performance and take
advantage of data level parallelism.[19] There is also some
work in writing compilers that can convert otherwise non-
vector code into vector code, automatically taking advantage of
vector units.[18] As graphics algorithms become standardized,
some processors are specifically accelerating specific kinds of
3D vector math, lighting, and shading[20].

The number of modern applications which have large
amounts of instruction level parallelism and data level par-
allelism continue to increase as the popularity of applica-
tions like DVD encoding and playback, MP3 encoding and
playback, streaming audio and video, and high bandwidth
communications increases. Since VPUs satisfy this growing
need in a way that is also low latency, power efficient,
and relatively easy to implement, they are becoming more
prevalent in modern processors.

REFERENCES

[1] D. K. et. al., “Altivec extension ot powerpc accelerates media process-
ing,” IEEE Micro, vol. 20, no. 2, pp. 85–95, 2000.

[2] I. Freescale Semiconductor, AltiVec Technology Programming Environ-
ments Manual, 2002.

[3] M. Inc., AltiVec Technology Programming Interface Manual. Denver,
CO: Motorola Inc., 1999.

[4] I. Freescale Semiconductor, “Altivec execution unit and instruction set
overview,” 2004.

[5] J. H. Stokes, “3 1/2 simd architectures,” p. Web article, 2000.
[6] C. B. Software, “Vast/altivec code examples,” 2003.
[7] M. Wilcox, “Simd,” 10 December 2004 2004.
[8] P. A. Mittal, M. and U. Weiser, “Mmx technology architecture overview,”

1997.
[9] A. Peleg and U. Weiser, “Mmx technology extension to the intel

architecture,” IEEE Micro, vol. 16, no. 4, pp. 42–50, 1996.

[10] I. Corp, “Intel architecture software developer’s manual,” 1997.
[11] G. S. Kagan, M. and D. Lin, “Mmx microarchitecture of pentium

processors with mmx technology and pentium ii microprocessors,” 1997.
[12] J. H. Stokes, “Inside the powerpc 970,” 2000.
[13] S. Thakkar and T. Huff, “The internet streaming simd extensions,” 1999.
[14] D. W. Brooks, “Vector processor,” 4 December 2004.
[15] K. A. et. al., “Vector architecture for emotion synthesis,” IEEE Micro,

2000.
[16] M. Technologies, “Mips technologies in the heart of playstation2 com-

puter entertainment system,” 2000.
[17] E. R. et. al., “Tarantula: A vector extension to the alpha architecture.”
[18] C. Kozyrakis and D. Patterson, “Scalable vector processors for embed-

ded systems,” IEEE Micro, 2003.
[19] M. Duranton, “Image processing by neural networks,” IEEE Micro,

1996.
[20] A. F. et al., “Sh4 risc multimedia microprocessor,” IEEE Micro, 1998.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 48

VLIW and Superscalar Processing
Sean Munson

Olin College of Engineering
Needham, Massachusetts 02492

Email: sean.munson@students.olin.edu

Clara Cho
Olin College of Engineering

Needham, Massachusetts 02492
Email: clara.cho@students.olin.edu

Abstract— A number of processors add additional arithmetic
logic units (ALUs) and other execution elements in order to
complete multiple operations simultaneously, a process called
parallelism. Superscaler processors achieve this by determining
in hardware which instructions can be executed in parallel; Very
Long Instruction Word implementations place this burden on the
compiler.

I. I NTRODUCTION

Modern computer processors tend to have a great number
of components inside, not all of which are utilized simultane-
ously. Maximizing the utilization of existing processor com-
ponents with few hardware changes can result in significant
performance increases.

A number of ways to use processor components in parallel
have been invented and implemented, including pipelined,
multiple core, superscalar, and very-long instruction word
processing.

A. Pipelining

Pipelining groups processor components into stages in
which they are used. Instructions can then be implemented
over multiple pipelined stages. While this does require the
addition of some hardware, the overall goal of pipelining is to
find components that are rarely if ever used concurrently on
the same instruction, and to separate them so that subsequent
instructions can utilize them without waiting for the entire
previous instruction to complete.

Pipelining has already been implemented in essentially all
desktop or server processors today, and so additional methods
are being pursued to continue to increase performance.

B. Multiple Processors

Many processor manufacturers are looking towards multiple
core processors to gain an additional speed boost. However,
this only offers advantages in limited applications [1].

C. Superscalar Processing

Superscalar implementations are capable of fetching and ex-
ecuting more than one instruction at a time. Hardware is used
to evaluate existing instructions and decide which can be run
simultaneously, which preserves backwards compatibility with
code designed for preexisting processors but makes superscalar
processors more complex. Most modern desktop processors
have some level of superscalar operations implemented.

TABLE I

ARCHITECTUREDIFFERENCESBETWEEN RISC AND VLIW PROCESSORS

Architecture Element RISC VLIW

Instruction size One size (32 bits) One size

Instruction contents One simple instruc-
tion

Multiple simple, inde-
pendent instructions

Hardware design One pipline Multiple pipelines

D. Very Long Instruction Word Processing

Very long instruction word processing (VLIW) is similar to
superscalar implementations in its ability to execute multiple
instructions in parallel. However, VLIW processors require the
instructions to be compiled into an arrangement optimized
for simultaneous execution, which reduces their hardware
complexity but does require specifically compiled code in
order to improve performance.

II. SUPERSCALAR ANDVLIW A RCHITECTURES

There are key differences in instruction size, format, and
length, as well as in how hardware is optimized for perfor-
mance between standard RISC and VLIW architectures.

Beyond being some number of RISC instructions strung
together, VLIW instructions are not very different from RISC
instructions. Most often, a VLIW instruction is the length of
three RISC instructions and contains slots for a branch in-
struction, an execution instruction, and a memory instruction,
though not all implementations follow this form.

Superscalar implementations vary; some have been used for
CISC architectures and some for RISC. The defining charac-
teristic of superscalar instructions, however, is that they are
not different from their parent instruction set as combination
and optimization is performed at the hardware level.

VLIW bytecode differs from other code in a key way. Most
code – that written for scalar and superscalar processors –
is an algorithm defining what has to happen. The hardware
either simply executes it in order, or in the case of superscalar
implementations or pipelines with scheduling units, reorders
it to a more efficient execution plan as it procedes. VLIW
code, in contrast, is a very specific set of instructions for the
processor that defines not only what must happen but how
it must happen [10]; the processor makes no decisions about
order of execution.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 49

Fig. 1. RISC Superscalar Implementation

III. I MPLEMENTATION OF SUPERSCALAR ANDVLIW
RISC PROCESSORS

A. Superscalar

Most modern desktop computer processors support some
level of superscalar operation that is compatible with existing
RISC or CISC architectures. To do so, chip designers add ad-
ditional pipelines as well as complicated instruction buffering
and dispatching modules in order to detect statements which
can be run concurrently and optimized. An overview of one
such implementation is shown in figure 1.

Instructions are fetched from the memory, similar to as in
other processors, but are selected in reasonably large batches.
These instructions are passed to an instruction decoder and
buffer, which determines the order in which the instructions
will be sent to the execution units by analyzing the type
of instruction and its dependencies on values from previous
instructions. Reordered instructions are then dispatched to the
execution units, which are a mix of ALUs for integer and
floating point operations, branch control units, and memory
access units. The complexity of the buffer and dispatch unit
grows geometrically with the number of execution units in the
processor and limits the number of execution units in super-
scalar processors [10]. This complexity in today’s superscalar
dispatch and scheduling units tends to be prohibitive for much
more than six execution units [9].

Returns also diminish with increasing numbers of execution
units in superscalar processors. Compilers for RISC and CISC
processors produce the same instructions regardless of whether
or not they are intended for superscalar or more standard
(scalar) processor implementations. Since most existing pro-
cessors tend to be scalar, the compilers are optimized for
them and work to reduce code size. The reduction of code
size is achieved largely through branch statements, with which
superscalar processors do not handle very well[?]. In order to
search for parallelism, the processor must know the outcome
of the branch or at least predict it.

Because branch prediction is just that – a prediction – it
is important that instructions executed based on it do not get
saved in a way that cannot be undone until the prediction
is complete. A large superscalar processor can execute a
particularly large number of instructions speculatively, and so a

reorder buffer is often added to temporarily store and use these
predicted values. Once the branch prediction is confirmed,
its contents are written to the register; if the branch is not
confirmed the contents are simply discarded. As with the
instruction buffer and dispatcher, the complexity of the reorder
buffer grows geometrically with the number of execution
pipes.

B. VLIW Implementation

VLIW implementation, also known as static superscalar
implementation, is essentially the same as a superscalar im-
plementation but without the complex and costly instruction
dispatch units and reordering units. This is achieved by putting
the responsibility on the compiler; it must output code that is
already in optimized, ordered batches of instructions for the
VLIW processor. Each batch is one of the “very long words.”

1) Compilers for Optimization:In addition to removing
the most complicated hardware associated with superscalar
processors, VLIW’s use of the compiler to optimize the
bytecode generated results in further performance gains. A
compiler can look at much larger windows of code – up to the
entire program – to parallelize and optimize than a hardware
dispatcher, and some particularly sophisticated optimization
techniques can be applied if the source code is available.

One of these techniques is Trace Scheduling, developed by
Joseph Fisher in the 1980s [2]. Trace scheduling works by
analyzing the entire source code of the program – in its original
programming language – then scheduling, in order of priority,
the most likely path of execution, code to accept and discard
the speculated values as necessary, the second most path, and
so on. Predictions made at the compiler level can be more
accurate as it has a picture of the entire program and can run
the program a number of times to analyze its behavior.

This leads into another advantage of optimizing at compile-
time. Compilation need only be performed once, which is
more efficient than superscalar’s optimizations that need be
performed every time the program is executed. Additionally,
compilers can continue to be improved and rerun on existing
hardware; this is not possible for hardware-based solutions.

Some accountability for branch mispredictions is still re-
quired, but not at the level of the superscalar processor, as the
compiler is aware of which statements will be speculatively
executed and stores those values in temporary registers until
the prediction is confirmed. It also inserts instructions to copy
them over once the prediction is confirmed. For this reason,
VLIW processors sometimes utilize a somewhat larger register
but do not require a reorder buffer. A VLIW implementation
is shown in Figure 2.

2) VLIW Drawbacks:The drawback to VLIW processors,
consequently, is that code must be compiled specifically for
them into order to take advantage of performance gains or
sometimes to even run at all. The compiler must also be written
for the specific VLIW implementation, so that instruction
size is matched to the number of execution units. Some chip
manufacturers have developed creative work-arounds, which
will be discussed later.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 50

Fig. 2. RISC VLIW Implementation

Additionally, in both superscalar and VLIW operations,
programs rarely use all of the execution units simultaneously,
which means that some are often idle. Balance between
large numbers of execution units – to generate maximum
performance at times when they can all be used – and limiting
the number to one where most are usually in use to save on
cost and chip size is a challenge. Other components on the
chip must increase in size proportionally to the number of
execution units under most VLIW schemes since the VLIW
instruction has a block of bits for each execution unit; adding
execution units increases amount of instruction memory and
the size of the instruction unit required.

Some work has been done on reducing the size of instruc-
tions to limit the additional instruction resources required.
One scheme encodes (compresses) the instructions. Another
includes flags in the instruction for which execution units
should be used during the cycle and only sends an instruction
for those units. This offers some improvement, but complexity
is somewhat increased, and the maximum possible word size
is increased somewhat to include the execution unit flags.

The variety of options for VLIW implementation means that
the processor and compiler must be well matched. The general
consensus is that they must in fact be codeveloped and targeted
specifically for each other [3][4].

This, however, could rapidly become a problem for soft-
ware developers if there were a number of different VLIW
implementations on the market – code would have to be
compiled and distributed for each, unless source code were
made available for users to compile. Software manufacturers
are not inclined to do so. Additionally, since VLIW compilers
use knowledge of the processor at the execution-unit level,
upgrading to a new processor could require recompilation of
all programs. One proposal to get around this problem calls
for software to be compiled first into a hardware-independent,
intermediate VLIW-compatible code first and then into native
code on the end user’s machine [9]. A system such as the Open
Software Foundation’s Architecture-Neutral File Distribution
Format (ANDF) would be sufficient to meet these goals but
still cause significant additional work for software developers
[10].

IV. EXISTING SUPERSCALAR ANDVLIW PROCESSORS

A. Superscalar

Most modern processors support some degree of superscalar
operation, including both the IA-32 (x86) and the Pow-
erPC970. Consistent with superscalar processor limitations,
these top out at five or six execution units[11].

B. VLIW

1) Historical: VLIW is not a particularly new idea; the
basic idea can trace its origins to work performed in the 1940s
and 50s by Alan Turing and Maurice Wilkes [9]. The first
computers to emerge with true VLIW processors were in the
early 1980s, led by Joseph Fisher. The initiative came not from
hardware thoughts but initially from compiler revolutions – his
invention of Trace Scheduling. This made VLIW practical,
and he left his teaching position at Yale to start MultiFlow in
1984. The first MultiFlow computers were highly-specialized,
small supercomputers[10]; the specialization allowed them to
sidestep the challenges that arise from having little existing
code compiled for a new architecture. The processors were
large and could issue up to 28 simultaneous instructions. They
were also made out of a number of discrete, rather than
integrated, components, which decreased their reliability while
raising costs. This ultimately led to the company’s failure in
1990; had today’s capabilities to integrate many components
on a single chip been available, the situation may have turned
out differently.

In the 1990s, a number of companies licensed the tech-
nology to produce VLIW chips. Intel’s i860 RISC processor
could operate both in scalar and VLIW modes, but failed
because compiler technology was not sufficiently advanced to
be able to take advantage of the i860’s architecture [?]. As
of 1996, VLIW compilers were still very much considered to
exist primarily in the research domain [9].

2) Present: The Intel-HP joint venture to produce the IA-
64 Itanium is an example of VLIW processing, first released
in 1999, also under the leadership of Joseph Fisher. This par-
ticular implementation takes instructions in batches of three,
and has 22 execution units divided among six integer units,
six multimedia units, two load units, two store units, three
branch units, two extended-precision floating point units, and a
single-precision floating point unit. It deals with the challenges
of branch prediction by speculatively executing both possible
outcomes, so long as execution units and registers are available
[5].

However, because relatively few applications have been
recompiled for the IA-64 – essentially none at its launch –
Intel chose to also include superscalar capabilities to maintain
high performance on existing code. IA-32-compatible code
first enters an IA-32 decode, sort, and dispatch module which
transforms the statements into VLIW equivalents. When the
processor encounters pre-optimized VLIW code, it simply
bypasses the dispatch unit. Intel calls this synergy “Explicit
Parallel Computing” (EPIC), partly as a marketing decision
to avoid previous negative connotations of VLIW and also

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 51

because it is not pure VLIW. Because Intel had to maintain
back-compatibility with IA-32 code, the IA-64 achieves only
the performance enhancements associated with VLIW and not
the cost-savings.[6]

Transmeta has also implemented VLIW in its low-power
Crusoe processors. Increasingly complex superscalar process-
ing requires massive amounts of control logic to properly
schedule instructions; this effect does not exist in VLIW
processors since the scheduling was completed at run time;
with the removal of this complicated hardware, the power
requirements decrease. In order to achieve the desired effects,
though, Transmeta required that their processor be able to
treat all code as VLIW, and to do so, they developed a
software translator that converts, in real time, IA-32 binaries
into VLIW bytecode. Crusoe chips are able to execute four
32-bit instructions each cycle. [7]

IBM Research is also developing its own software trans-
lator for existing code into VLIW format, the Dynamically
Architected Instruction Set from Yorktown (DAISY). An early
version of the software is available for download directly from
their website. DAISY is able to convert binaries compiled for
PowerPC, x86, S/390 architectures as well as the Java Virtual
Machine into optimized VLIW code, bringing the added ben-
efit of cross-architecture performance [8]. Of course, the trade
off of these software translators is that some processor cycles
are spent modifying the code, and so the gain in other goals
– performance boosts and power reduction through VLIW or
cross-architecture compatibility – must be sufficient to justify
this performance drop.

VLIW has also appeared in some lower-end processors.
STMicro launched a generalized VLIW processor to compete
with specialized DSP chips. This offered a mix of advantages:
low cost processors and easier coding. DSP coding has been
described as particularly painful, the VLIW compiler used is
able to produce bytecode that rivals its DSP competitors from
languages as comfortable to programmers as C [12].

V. CONCLUSION

VLIW processing offers some significant advantages in chip
size and cost compared to superscalar instruction-level paral-
lelism, but these benefits come with the cost of much more
complex and processor-specific compilers. Current VLIW pro-
cessors, such as the IA-64, maintain backwards compatibility
by offering a legacy mode, though this results in performance
slowdowns when running the outdated code and eliminates
some of the advantages offered by VLIW processors. Ad-
vances made in binary-to-binary code translation by Transmeta
and IBM may eventually lead to pure-VLIW processors if
they are able to rapidly and reliably translate binaries for one
architecture into binaries optimized for any specific VLIW
chip.

ACKNOWLEDGMENT

The authors would like to thank Mark Chang for providing
the Computer Architecture foundation we needed to stand on
in order complete this project. Additionally, the authors simply

must thank Kathy King and Sarah Zwicker for their company
during long hours in the library.

REFERENCES

[1] Philips Semiconductors,An Introduction to Very Long Instruction Word
Computer Architecture.Publication # 9397-750-01759.

[2] Fisher, J.A.. “Global code generation for instruction-level parallelism:
Trace scheduling-2,” Technical Report HPL-93-43, Hewlett Packard Lab-
oratories, June 1993.

[3] Wahlen, Oliver et al. “Codesign of Hardware, Software, and Algorithms.”
Proceedings of the Joint conference on Languages, Compilers and Tools
for Embedded Systems, 2002.

[4] Wilberg, J. et al. “Application specific compiler/architecture codesign: a
case study,”IEEE Circuits and Systems, ISCAS ’96., “Connecting the
World” , 1996.

[5] Intel Corporation.Intel Itanium 2 Hardware Developer’s Manual, July
2002. http://www.intel.com/design/itanium2/manuals/25110901.pdf.

[6] Sharangpani, Harsh. “Intel Itanium Microarchitecture
Overview,” Intel Microprocessor Forum, October 1999.
http://www.dig64.org/Moreon DIG64/microarchovw.pdf

[7] Transmeta Corporation. “Crusoe Architecture.”
http://www.transmeta.com/crusoe/vliw.html

[8] Altman, Erik and Kemal Ebcioglu. “DAISY: Dynamic Compilation
for 100% Architectural Compatibility.” IBM LabsRC20538, 1996.
http://www.transmeta.com/crusoe/vliw.html

[9] Pountain, Dick. “The Word on VLIW,”BYTE Talk, 1996.
[10] Len, Maksim and Ilya Vaitsman. “Old Architecture of the New Gener-

ation, ” Digit-Life, 2002.
[11] Apple Computer Corporation “Apple PowerPC Execution Core,” 2004.

http://www.apple.com/g5processor/executioncore.html.
[12] Cataldo, “HP Helps put VLIW into STMicro’s System-Chip,”Design

and Resuse,22 January 2002.

PROCEEDINGS OF THE FALL 2004 ENGR 3410: COMPUTER ARCHITECTURE CLASS (CA2004), FRANKLIN W. OLIN COLLEGE OF ENGINEERING 52

