
1

Acknowledgements

Class notes based upon
Patterson & Hennessy: Book & Lecture Notes
Patterson’s 1997 course notes (U.C. Berkeley CS 152, 1997)
Tom Fountain 2000 course notes (Stanford EE182)
Michael Wahl 2000 lecture notes (U. of Siegen CS 3339)
Ben Dugan 2001 lecture notes (UW-CSE 378)
Professor Scott Hauck lecture notes (UW EE 471)

2

Why are you here?

3

What is Computer Architecture?

4

What things are important when buying a computer?

(What features do you look for when buying one?)

5

Computer “Performance”

MIPS (Million Instructions Per Second) vs. MHz (Million Cycles Per Second)

Throughput (jobs/seconds) vs. Latency (time to complete a job)

Measuring, Metrics, Evaluation – what is “best”?

The PowerBook G4 outguns Pentium
III-based notebooks by up to 30 percent.*

* Based on Adobe Photoshop tests
comparing a 500MHz PowerBook G4 to
850MHz Pentium III-based portable computers

3.09 GHz
Pentium 4

Hyper
Pipelined

Technology

6

Performance Example: Planes

Which is the “best” plane?
Which gets one passenger to the destination first?
Which moves the most passengers?
Which goes the furthest?

Which is the “speediest” plane (between Seattle and NY for example)?
Latency: how fast is one person moved?
Throughput: number of people per time moved?

178,20013504000132Concorde

79,4245448720146Douglas DC-8

286,7006104150470Boeing 747

228,7506104630375Boeing 777

Passenger Throughput
(passengermile/hour)

Cruising
Speed (mph)

Cruising
Range (miles)

Passenger
Capacity

Airplane

7

Computer Performance

Primary goal: execution time (time from program start to program completion)

To compare machines, we say “X is n times faster than Y”

Example: Machine Orange and Grape run a program
Orange takes 5 seconds, Grape takes 10 seconds

Orange is _____ times faster than Grape

imeExecutionT
ePerformanc 1
=

x

y

y

x
imeExecutionT
imeExecutionT

ePerformanc
ePerformancn ==

8

Execution Time

Elapsed Time
counts everything (disk and memory accesses, I/O , etc.)
a useful number, but often not good for comparison purposes

CPU time
doesn't count I/O or time spent running other programs
can be broken up into system time, and user time

Example: Unix “time” command
fpga.olin.edu> time javac CircuitViewer.java
3.370u 0.570s 0:12.44 31.6%

Our focus: user CPU time
time spent executing the lines of code that are "in" our program

9

CPU Time

Application example:
A program takes 10 seconds on computer Orange, with a 400MHz clock.
Our design team is developing a machine Grape with a much higher clock
rate, but it will require 1.2 times as many clock cycles. If we want to be able
to run the program in 6 second, how fast must the clock rate be?

CPU execution time
for a program

CPU clock cycles
for a program Clock period= *

CPU execution time
for a program

CPU clock cycles
for a program

1
Clock rate= *

10

CPI

How do the # of instructions in a program relate to the execution time?

CPU clock cycles
for a program

Instructions
for a program

Average Clock
Cycles per Instruction

(CPI)
= *

CPU execution time
for a program

Instructions
for a program= * 1

Clock rate* CPI

11

CPI Example

Suppose we have two implementations of the same instruction set (ISA).

For some program
Machine A has a clock cycle time of 10 ns. and a CPI of 2.0
Machine B has a clock cycle time of 20 ns. and a CPI of 1.2

What machine is faster for this program, and by how much?

12

Computing CPI

Different types of instructions can take very different amounts of cycles
Memory accesses, integer math, floating point, control flow

()∑=
types

typetype FrequencyCyclesCPI *

20%2Branch

20%5Load

CPI:

10%3Store

50%1ALU
Cycles * FreqType FrequencyType CyclesInstruction Type

13

CPI & Processor Tradeoffs

How much faster would the machine be if:
1. A data cache reduced the average load time to 2 cycles?

2. Branch prediction shaved a cycle off the branch time?

3. Two ALU instructions could be executed at once?

20%2Branch

20%5Load
10%3Store

50%1ALU
Type FrequencyType CyclesInstruction Type

14

Warning 1: Amdahl’s Law

The impact of a performance improvement is limited by what is NOT improved:

Example: Assume a program runs in 100 seconds on a machine, with multiply
responsible for 80 seconds of this time. How much do we have to speed up
multiply to make the program run 4 times faster?

5 times faster?

Execution time
after improvement

Execution time
of unaffected= * 1

Amount of improvement+ Execution time
affected

