Acknowledgements

Class notes based upon
Patterson \& Hennessy: Book \& Lecture Notes
Patterson's 1997 course notes (U.C. Berkeley CS 152, 1997)
Tom Fountain 2000 course notes (Stanford EE182)
Michael Wahl 2000 lecture notes (U. of Siegen CS 3339)
Ben Dugan 2001 lecture notes (UW-CSE 378)
Professor Scott Hauck lecture notes (UW EE 471)

Why are you here?

What is Computer Architecture?

What things are important when buying a computer?
(What features do you look for when buying one?)

- Price -Powar/Heat
- Speed \rightarrow Frames /s \rightarrow Physical Dimensions
$\left(\begin{array}{l}\text { Ins /s } \\ \text { Disk seed } \rightarrow \text { rotational velocity } \\ \text { access time. }\end{array}\right.$
- Amount ot memory (vs. disk in latency) types of memory (cpu cache, voided mam, HD)
- Good sound.
- Features/complexity of CPU. \rightarrow instruction set
- Compatiblitits.

$$
\rightarrow \text { Noise }
$$

- Reliability.

Computer "Performance"

MIPS (Million Instructions Per Second) vs. MHz (Million Cycles Per Second)

Throughput (jobs/seconds) vs. Latency (time to complete a job)

Measuring, Metrics, Evaluation - what is "best"?

3.09 GHz The PowerBook G4 outguns Pentium

Pentium 4
III-based notebooks by up to 30 percent.*

* Based on Adobe Photoshop tests comparing a 500MHz PowerBook G4 to 850MHz Pentium III-based portable computers

Performance Example: Planes

Airplane	Passenger Capacity	Cruising Range (miles)	Cruising Speed (mph)	Passenger Throughput (passengermile/hour)
Boeing 777	375	4630	610	228,750
Boeing 747	470	4150	610	286,700
Concorde	132	4000	1350	178,200
Douglas DC-8	146	8720	544	79,424

Which is the "best" plane?
Which gets one passenger to the destination first?
Which moves the most passengers?
Which goes the furthest?

Which is the "speediest" plane (between Seattle and NY for example)?
Latency: how fast is one person moved?
Throughput: number of people per time moved?

Computer Performance

Primary goal: execution time (time from program start to program completion)

$$
\text { Performance }=\frac{1}{\text { ExecutionTime }}
$$

To compare machines, we say " X is n times faster than Y "

$$
n=\frac{\text { Performance }_{x}}{\text { Performance }_{y}}=\frac{\text { ExecutionTime }_{y}}{\text { ExecutionTime }_{x}}
$$

Example: Machine Orange and Grape run a program
Orange takes 5 seconds, Grape takes 10 seconds

Orange is 2 times faster than Grape

Execution Time

Elapsed Time
counts everything (disk and memory accesses, I/O , etc.)
a useful number, but often not good for comparison purposes
CPU time
doesn't count I/O or time spent running other programs can be broken up into system time, and user time

Example: Unix "time" command

```
    fpga.olin.edu> time javac CircuitViewer.java
```

 3.370u 0.570s 0:12.44 31.6\%
 Our focus: user CPU time time spent executing the lines of code that are "in" our program

CPU Time

Application example:
A program takes 10 seconds on computer Orange, with a 400 MHz clock. Our design team is developing a machine Grape with a much higher clock rate, but it will require 1.2 times as many clock cycles. If we want to be able to run the program in 6 second, how fast must the clock rate be?

$$
\text { ORANGE } 105=\frac{x}{400}
$$

$$
\text { ERIC SER } \rightarrow 800 \mathrm{MHz}
$$

CPI

How do the \# of instructions in a program relate to the execution time?

$$
\begin{gathered}
\text { CPU clock cycles } \\
\text { for a program }
\end{gathered}=\begin{gathered}
\text { Instructions } \\
\text { for a program }
\end{gathered} * \quad \begin{gathered}
\text { Average Clock } \\
\text { Cycles per Instruction } \\
\text { (CPI) }
\end{gathered}
$$

$\begin{gathered}\text { CPU execution time } \\ \text { for a program }\end{gathered} \quad=\begin{gathered}\text { Instructions } \\ \text { for a program }\end{gathered} \quad * \quad$ CPI $\quad * \quad \frac{1}{\text { Clock rate }}$

CPI Example
Suppose we have two implementations of the same instruction set (ISA).
For some program
Machine A has a clock cycle time of 10 ns . and a CPI of 2.0
Machine B has a clock cycle time of 20 ns . and a CPI of 1.2
What machine is faster for this program, and by how much?

$$
\begin{aligned}
& \text { cpu clock Cycles } A=I \times 2.0 \\
& \text { cpu clock Cycles }=I \times 1.2 \\
& \text { centime }_{A}=I \times 2.0 \times 10 \mathrm{ss}=20 \times I n s \\
& B= I \times 1.2 \times 20 n s=24 \times I n s \\
& \frac{24 \times I n s}{20 \times I n s}=1.2 \times
\end{aligned}
$$

Computing CPI

Different types of instructions can take very different amounts of cycles
Memory accesses, integer math, floating point, control flow

$$
C P I=\sum_{\text {types }}\left(\text { Cycles }_{\text {type }} * \text { Frequency }_{\text {type }}\right)
$$

Instruction Type	Type Cycles	Type Frequency	Cycles * Freq
ALU	1	50%	.5
Load	5	20%	1.0
Store	3	10%	0.3
Branch	2	20%	0.4

CPI \& Processor Tradeoffs

Instruction Type	Type Cycles	Type Frequency
ALU	1	50%
Load	5	20%
Store	3	10%
Branch	2	20%

How much faster would the machine be if:

1. A data cache reduced the average load time to 2 cycles?

$$
\text { OLD }=\frac{2.2}{1.6}=1.375 x
$$

2. Branch prediction shaved a cycle off the branch time?

$$
\frac{2.2}{2}=1.1 x
$$

3. Two ALU instructions could be executed at once?

$$
\frac{2.2}{1.8}=1.22 x
$$

Warning 1: Amdahl's Law
The impact of a performance improvement is limited by what is NOT improved:

$$
\underset{\text { Exec improvement }}{\text { Exon time }}=\begin{gathered}
\text { Execution time } \\
\text { of unaffected }
\end{gathered}+\begin{gathered}
\text { Execution time } \\
\text { affected }
\end{gathered} * \frac{1}{\text { Amount of improvement }}
$$

Example: Assume a program runs in 100 seconds on a machine, with multiply responsible for 80 seconds of this time. How much do we have to speed up multiply to make the program run 4 times faster?

$$
\begin{aligned}
O L D=100 \mathrm{~s} \rightarrow 25 \mathrm{~s} & \Rightarrow 20 \mathrm{~s}+80 / \mathrm{N} \\
N & =16 .
\end{aligned}
$$

5 times faster?

$$
20 s-\operatorname{can}^{i} d o
$$

