Truth Tables

Algebra: variables, values, operations
In Boolean algebra, the values are the symbols 0 and 1
If a logic statement is false, it has value 0
If a logic statement is true, it has value 1
Operations: AND, OR, NOT

X	Y	X AND Y
0	0	0
0	1	0
1	0	0
1	1	1

X	NOT X
0	1
1	0

X	Y	X OR Y
0	0	0
0	1	1
1	0	1
1	1	1

Boolean Equations

```
Boolean Algebra
values: 0, 1
variables: A, B, C, ..., X, Y, Z
operations: NOT, AND, OR, . . .
```

NOT X is written as \bar{X}
X AND Y is written as $X \& Y$, or sometimes $X Y$
X OR Y is written as $X+Y$

Deriving Boolean equations from truth tables:

A	B	Sum	Carry	+ AB
	0	0	0	
	1	1	0	
1	0	1	0	
1	1	0		if inpu if 1 , it

Carry = A B

Boolean Algebra

Another example:

Boolean Algebra

Reducing the complexity of Boolean equations
Laws of Boolean algebra can be applied to full adder's carry out function to derive the following simplified expression:

Verify equivalence with the original Carry Out truth table:
place a 1 in each truth table row where the product term is true
each product term in the above equation covers exactly two rows in the truth table; several rows are "covered" by more than one term

Representations of Boolean Functions

Why Boolean Algebra/Logic Minimization?

Logic Minimization: reduce complexity of the gate level implementation

- reduce number of literals (gate inputs)
- reduce number of gates
- reduce number of levels of gates
fewer inputs implies faster gates in some technologies
fan-ins (number of gate inputs) are limited in some technologies
fewer levels of gates implies reduced signal propagation delays
number of gates (or gate packages) influences manufacturing costs

Basic Boolean Identities:

$$
\begin{array}{ll}
x+0=x & X * 1=x \\
x+1=1 & x * 0=0 \\
x+x=x & x * x=X \\
x+\bar{X}=1 & x * \bar{X}=0 \\
\bar{x}=x &
\end{array}
$$

Basic Laws

Commutative Law:
$X+Y=Y+X$

Associative Law:
$X+(Y+Z)=(X+Y)+Z \quad X(Y Z)=(X Y) Z$
Distributive Law:
$X(Y+Z)=X Y+X Z$
$X+Y Z=(X+Y)(X+Z)$

Boolean Manipulations

Boolean Function: $F=X Y Z+\bar{X} Y+X Y \bar{Z}$

Truth Table:

X	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	$=y(x z+\bar{x} y+x \bar{x})$
	$=y(x(z+\bar{z})+\bar{x})$		
	$=y(x(1)+\bar{x})$		
	$=y(x+\bar{x})$		
	$=y(1)$		
	$=y$		

Advanced Laws

$$
=x y
$$

$$
\begin{aligned}
& X+X Y=x(1+y)=x(1)=x \\
& \text { - } X Y+X \bar{Y}=X(y+\bar{y})=x(c)=x \\
& \text { - } X+\bar{X} Y=x+y \\
& \text { - } \mathrm{X}(\mathrm{X}+\mathrm{Y})=\mathrm{X} x+x y=x+x y=\otimes \\
& (\mathrm{X}+\mathrm{Y})(\mathrm{X}+\overline{\mathrm{Y}})=x(x+y)+\bar{y}(x+y)=\left(x x /+\begin{array}{c}
\left.{ }^{x} x y\right)+x \bar{y}+\bar{y} y= \\
\mathrm{X}
\end{array}\right) \\
& X(\bar{X}+Y)=x \bar{x}+x y \\
& =0+x y \\
& =x+x \bar{y}+\bar{y} y \\
& =x+x y \\
& =x(1+\bar{y}) \\
& =\otimes
\end{aligned}
$$

Boolean Manipulations (cont.)

Boolean Function: $F=\bar{X} Y Z+X Z$

Truth Table:

X	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Reduce Function:

$$
\begin{aligned}
F & =z(\bar{x} y+x) \\
& =z(x+y)
\end{aligned}
$$

Boolean Manipulations (cont.)
Boolean Function: $F=(X+\bar{Y}+X \bar{Y})(X Y+\bar{X} Z+Y Z)$

Truth Table:

X	Y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Reduce Function:

$$
\begin{aligned}
& F= x x y \\
&+x \bar{x} z+x y z+x y y^{2} \\
&+\bar{x} \bar{y} z+y \bar{y} z^{\prime} \\
&+x \bar{y} \check{x} y+x \bar{y} \bar{x} z+x \bar{y} y z \\
&= x x y+x y z+\bar{x} \bar{y} z \\
&= x y+x y z+\bar{x} \bar{y} z \\
&=x y(1+z)+\bar{x} \bar{y} z \\
&= x y+\bar{x} \bar{y} z
\end{aligned}
$$

DeMorgan's Law

$$
\begin{aligned}
& \overline{(X+Y)}=\bar{X} * \bar{Y} \\
& \overline{(X * Y)}=\bar{X}+\bar{Y}
\end{aligned}
$$

X	Y	\bar{X}	\bar{Y}	$\overline{X+Y}$	$\bar{X} \cdot \bar{Y}$
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

X	Y	\bar{X}	\bar{Y}	$\bar{\bullet} \cdot \bar{X}+\bar{Y}$	
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

DeMorgan's Law can be used to convert AND/OR expressions to ORIAND expressions

Example:

$$
\begin{aligned}
& Z=\bar{A} \bar{B} C+\bar{A} B C+A \bar{B} C+A B \bar{C} \\
& \bar{Z}=(A+B+\bar{C}) *(A+\bar{B}+\bar{C}) *(\bar{A}+B+\bar{C}) * \overline{(A}+\bar{B}+C)
\end{aligned}
$$

