
28

Truth Tables

Algebra: variables, values, operations

In Boolean algebra, the values are the symbols 0 and 1
If a logic statement is false, it has value 0
If a logic statement is true, it has value 1

Operations: AND, OR, NOT

0
0
1
1

X Y X AND Y

0
1
0
1

0
0
0
1

X Y X OR Y

0
0
1
1

0
1
0
1

0
1
1
1

X NOT X
0
1

1
0

29

Boolean Equations

Boolean Algebra
values: 0, 1
variables: A, B, C, . . ., X, Y, Z
operations: NOT, AND, OR, . . .

NOT X is written as X
X AND Y is written as X & Y, or sometimes X Y
X OR Y is written as X + Y

A

0
0
1
1

B

0
1
0
1

Sum

0
1
1
0

Carry

0
0
0
1

Sum = A B + A B

Carry = A B

OR'd together product terms
for each truth table

row where the function is 1

if input variable is 0, it appears in
complemented form;

if 1, it appears uncomplemented

Deriving Boolean equations from truth tables:

30

Boolean Algebra

A

0
0
0
0
1
1
1
1

B

0
0
1
1
0
0
1
1

Cin

0
1
0
1
0
1
0
1

Sum

0
1
1
0
1
0
0
1

Cout

0
0
0
1
0
1
1
1

Another example:

Sum = A B Cin + A B Cin + A B Cin + A B Cin

Cout = A B Cin + A B Cin + A B Cin + A B Cin

31

Boolean Algebra

Reducing the complexity of Boolean equations

Laws of Boolean algebra can be applied to full adder's carry out
function to derive the following simplified expression:

Cout = A Cin + B Cin + A B

Verify equivalence with the original Carry Out truth table:

place a 1 in each truth table row where the product term is true

each product term in the above equation covers exactly two rows
in the truth table; several rows are "covered" by more than one term

A
0
0
0
0
1
1
1
1

C in
0
1
0
1
0
1
0
1

B
0
0
1
1
0
0
1
1

C out
0
0
0
1
0
1
1
1

B C in

A C in

A B

32

Representations of Boolean Functions

Boolean Function: F = X + YZ

Truth Table:
X Y Z F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Circuit Diagram:

33

Why Boolean Algebra/Logic Minimization?

Logic Minimization: reduce complexity of the gate level implementation

• reduce number of literals (gate inputs)

• reduce number of gates

• reduce number of levels of gates

fewer inputs implies faster gates in some technologies

fan-ins (number of gate inputs) are limited in some technologies

fewer levels of gates implies reduced signal propagation delays

number of gates (or gate packages) influences manufacturing costs

34

Basic Boolean Identities:

X + 0 = X * 1 =

X + 1 = X * 0 =

X + X = X * X =

X + X = X * X =

X =

35

Basic Laws

Commutative Law:
X + Y = Y + X XY = YX

Associative Law:
X+(Y+Z) = (X+Y)+Z X(YZ)=(XY)Z

Distributive Law:
X(Y+Z) = XY + XZ X+YZ = (X+Y)(X+Z)

36

Boolean Manipulations

Boolean Function: F = XYZ + XY + XYZ

Truth Table:

X Y Z F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Reduce Function:

37

Advanced Laws

X+XY =
XY + XY =
X+XY =
X(X+Y) =
(X+Y)(X+Y) =
X(X+Y) =

38

Boolean Manipulations (cont.)

Boolean Function: F = XYZ + XZ

Truth Table:
X Y Z F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Reduce Function:

39

Boolean Manipulations (cont.)

Boolean Function: F = (X+Y+XY)(XY+XZ+YZ)

Truth Table:
X Y Z F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Reduce Function:

40

DeMorgan’s Law

(X + Y) = X * Y

(X * Y) = X + Y

Example:
Z = A B C + A B C + A B C + A B C

Z = (A + B + C) * (A + B + C) * (A + B + C) * (A + B + C)

DeMorgan's Law can be used to convert AND/OR expressions
to OR/AND expressions

DeMorgan's Law can be used to convert AND/OR expressions
to OR/AND expressions

X
0
0
1
1

Y
0
1
0
1

X
1
1
0
0

Y
1
0
1
0

X + Y X•Y

X
0
0
1
1

Y
0
1
0
1

X
1
1
0
0

Y
1
0
1
0

X + Y X•Y

