Truth Tables

Algebra: variables, values, operations

In Boolean algebra, the values are the symbols 0 and 1 If a logic statement is false, it has value 0 If a logic statement is true, it has value 1

Operations: AND, OR, NOT

Х	Y	X AND Y	Х	NOT X
0 0 1 1	0 1 0 1	0 0 0 1	0 1	1 0

Х	Y	X OR Y
0	0	0
0	1	1
1	0	1
1	1	1

Boolean Equations

Boolean Algebra values: 0, 1 variables: A, B, C, . . ., X, Y, Z operations: NOT, AND, OR, . . .

NOT X is written as X X AND Y is written as X & Y, or sometimes X Y X OR Y is written as X + Y

Deriving Boolean equations from truth tables:

Another example:

Reducing the complexity of Boolean equations

Laws of Boolean algebra can be applied to full adder's carry out function to derive the following simplified expression:

Verify equivalence with the original Carry Out truth table:

place a 1 in each truth table row where the product term is true

each product term in the above equation covers exactly two rows in the truth table; several rows are "covered" by more than one term

Representations of Boolean Functions

Logic Minimization: reduce complexity of the gate level implementation

- reduce number of literals (gate inputs)
- reduce number of gates
- reduce number of levels of gates

fewer inputs implies faster gates in some technologies fan-ins (number of gate inputs) are limited in some technologies fewer levels of gates implies reduced signal propagation delays number of gates (or gate packages) influences manufacturing costs

Basic Boolean Identities	5:	1age 57
$X + 0 = \chi$	X * 1 =	\times
X + 1 =	X * 0 =	\diamond
$X + X = \times$	X * X =	X
$X + \overline{X} =$	$X * \overline{X} =$	\mathcal{O}
$\overline{\overline{X}} = $		

Basic Laws

X(Y+Z) = XY + XZ

Commutative Law:	
X + Y = Y + X	XY = YX
Associative Law:	
X+(Y+Z) = (X+Y)+Z	X(YZ)=(XY)Z
Distributive Law:	

X+YZ = (X+Y)(X+Z)

Boolean Manipulations

Advanced Laws

- $\blacksquare X + XY = \chi ((+\gamma)) = \chi (1) = (\chi)$
- $XY + X\overline{Y} = \chi (Y+\overline{Y})_{=}\chi(\iota) = K$
- $\blacksquare X + \overline{X}Y = \chi + \underline{y}$
- $\blacksquare X(X+Y) = \chi \gamma \tau \gamma \gamma = \chi \tau \gamma \gamma = \langle \chi \rangle$
- $(X+Y)(X+\overline{Y}) = \chi(\chi+\gamma) + \overline{y}(\chi+\gamma) = (\chi+\gamma) + \chi\overline{y} + \chi\overline{y} + \overline{y}\gamma = \chi(\overline{X}+Y) \chi(\overline{X}+Y) \chi(\chi+\gamma) + \chi\overline{y}\gamma + \overline{y}\gamma + \overline{y}$

= x+xy

= (X)

 $= x(1+\overline{2})$

Boolean Manipulations (cont.)

Boolean Function: $F = \overline{X}YZ + XZ$

Truth Table:

Reduce Function: F = z(xy + x)= z(x+y)

Boolean Manipulations (cont.)

Boolean Function:
$$F = (X + \overline{Y} + X\overline{Y})(XY + \overline{X}Z + YZ)$$

Reduce Function: Truth Table: F= XXY + XX2 + XY2 + XY7 Y Z |F X 1 X YZ + 47Z 0 0 0 0 f X ¥ XY + X ¥ X Z F X Y YZ 0 0 1 0 1 0 0 0 1 1 С > XXY + XYZ + XYZ $1 \quad 0 \quad 0$ 0 1 0 1 = XY+XY2 + X72 0 1 1 0 $= \chi \gamma (1+2) + \overline{\chi} \overline{\gamma} 2$ 1 1 1 = Xy + XY2 -

DeMorgan's Law

$\overline{(X + Y)} = \overline{X} * \overline{Y}$	X 0 0	Y 0 1	X 1 1	Y 1 0	$\frac{X+Y}{l}$	
	1	1	0	0	0	0
$\overline{(\mathbf{X} \ast \mathbf{X})} = \overline{\mathbf{X}} + \overline{\mathbf{X}}$	Х	Y	X	Y	X•Y	X+Y
$(\land \uparrow) = \land + \uparrow$	0	0	1	1	1	1
	0	1	1	0	1	1
	1	0	0	1	1	E
	1	1	0	0	0	0

DeMorgan's Law can be used to convert AND/OR expressions to OR/AND expressions

Example:

$$Z = \overline{A} \overline{B} C + \overline{A} \overline{B} C + \overline{A} \overline{B} C + \overline{A} \overline{B} \overline{C}$$
$$\overline{Z} = (A + B + \overline{C}) * (A + \overline{B} + \overline{C}) * (\overline{A} + B + \overline{C}) * (\overline{A} + \overline{B} + C)$$