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Truth Tables

Algebra: variables, values, operations

In Boolean algebra, the values are the symbols 0 and 1
If a logic statement is false, it has value 0
If a logic statement is true, it has value 1

Operations:  AND, OR, NOT

 
0 
0 
1 
1 

X Y X  AND Y 

0 
1 
0 
1 

0 
0 
0 
1 

X Y X  OR Y 

0 
0 
1 
1 

0 
1 
0 
1 

0 
1 
1 
1 

X NOT X 
0 
1 

1 
0 
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Boolean Equations

Boolean Algebra
values: 0, 1
variables: A, B, C, . . ., X, Y, Z
operations: NOT, AND, OR, . . .

NOT X is written as X
X AND Y is written as X & Y, or sometimes X Y
X OR Y is written as X + Y

A

0
0
1
1

B

0
1
0
1

Sum

0
1
1
0

Carry

0
0
0
1

Sum = A B  +  A B

Carry = A B

OR'd together product terms
for each truth table

row where the function is 1

if input variable is 0, it appears in 
complemented form;  

if 1, it appears uncomplemented

Deriving Boolean equations from truth tables:
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Boolean Algebra

A

0
0
0
0
1
1
1
1

B

0
0
1
1
0
0
1
1

Cin

0
1
0
1
0
1
0
1

Sum

0
1
1
0
1
0
0
1

Cout

0
0
0
1
0
1
1
1

Another example:

Sum = A B Cin +  A B Cin + A B Cin +  A B Cin

Cout = A B Cin +  A B Cin + A B Cin + A B Cin
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Boolean Algebra

Reducing the complexity of Boolean equations

Laws of Boolean algebra can be applied to full adder's carry out
function to derive the following simplified expression:

Cout = A Cin +  B Cin +  A B

Verify equivalence with the original Carry Out truth table:

place a 1 in each truth table row where the product term is true

each product term in the above equation covers exactly two rows
in the truth table;  several rows are "covered" by more than one term

A 
0 
0 
0 
0 
1 
1 
1 
1 

C in 
0 
1 
0 
1 
0 
1 
0 
1 

B 
0 
0 
1 
1 
0 
0 
1 
1 

C out 
0 
0 
0 
1 
0 
1 
1 
1 

B C in 

A C in 

A B 
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Representations of Boolean Functions

Boolean Function:  F = X + YZ

Truth Table:
X Y Z F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Circuit Diagram:
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Why Boolean Algebra/Logic Minimization?

Logic Minimization: reduce complexity of the gate level implementation

• reduce number of literals (gate inputs)

• reduce number of gates

• reduce number of levels of gates

fewer inputs implies faster gates in some technologies

fan-ins (number of gate inputs) are limited in some technologies

fewer levels of gates implies reduced signal propagation delays

number of gates (or gate packages) influences manufacturing costs
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Basic Boolean Identities:

X + 0 = X * 1 =

X + 1 = X * 0 =

X + X = X * X =

X + X = X * X =

X = 
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Basic Laws

Commutative Law:
X + Y = Y + X XY = YX

Associative Law:
X+(Y+Z) = (X+Y)+Z X(YZ)=(XY)Z

Distributive Law:
X(Y+Z) = XY + XZ X+YZ = (X+Y)(X+Z)
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Boolean Manipulations

Boolean Function:  F = XYZ + XY + XYZ

Truth Table:

X Y Z F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Reduce Function:
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Advanced Laws

X+XY =
XY + XY =
X+XY =
X(X+Y) =
(X+Y)(X+Y) =
X(X+Y) = 
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Boolean Manipulations (cont.)

Boolean Function:  F = XYZ + XZ

Truth Table:
X Y Z F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Reduce Function:
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Boolean Manipulations (cont.)

Boolean Function:  F = (X+Y+XY)(XY+XZ+YZ)

Truth Table:
X Y Z F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Reduce Function:
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DeMorgan’s Law

(X + Y)  = X * Y

(X * Y)  =  X + Y

Example:
Z = A B C  +  A B C  +  A B C  +  A B C

Z = (A + B + C) * (A + B + C) * (A + B + C) * (A + B + C)

DeMorgan's Law can be used to convert AND/OR expressions
to OR/AND expressions

DeMorgan's Law can be used to convert AND/OR expressions
to OR/AND expressions

X 
0 
0 
1 
1 

Y 
0 
1 
0 
1 

X 
1 
1 
0 
0 

Y 
1 
0 
1 
0 

X + Y X•Y 

X 
0 
0 
1 
1 

Y 
0 
1 
0 
1 

X 
1 
1 
0 
0 

Y 
1 
0 
1 
0 

X + Y X•Y 


