* If a 200 MHz machine runs $1 / 2$ billion instructions in 10 seconds, what is the CPI of the machine?

$$
\begin{aligned}
& 200 \mathrm{MHz} \times 10 \mathrm{~s}=2 \mathrm{~B} \text { cydes } \\
& 2 \mathrm{Bcycks} / 0.5 \mathrm{~B} \text { inst }=4 \frac{\text { Cycles }}{\text { instr. } .}
\end{aligned}
$$

* If a second machine with the same CPI runs the program in 5 seconds, what is it's clock rate?

$$
400 \mathrm{MHz}
$$

* A program is 20% multiplication, 50% memory access, 30% other. You can quadruple multiplication speed, or double memory speed
* How much faster with 4 x molt:

$$
\begin{aligned}
& \text { How much faster with 4x mull: } \\
& S_{\text {peedup }}=\frac{1}{.5+.3+.05}=\frac{1}{.85}=1.18 \times
\end{aligned}
$$

* How much faster with 2 x memory:

$$
\begin{aligned}
& \text { How much faster with 2x memory: } \\
& \text { Spedep }=\frac{1}{.2+.25+.3}=\frac{1}{.75}=1.33 x
\end{aligned}
$$

$*$ How much faster with both 4 x melt \& 2 x memory:

$$
\text { Secede }_{\text {pp }}=\frac{1}{.05+.25+.3}=\frac{1}{2.6}=1.67 x
$$

