
74

Combinational Logic Design Process

1. Understand the Problem
what is the circuit supposed to do?
write down inputs (data, control) and outputs
draw block diagram or other picture

2. Formulate the Problem in terms of a truth table or other suitable
design representation

truth table, Boolean algebra, etc.

3. Choose Implementation Target
PAL, PLA, Mux, Decoder, Discrete Gates

4. Follow Implementation Procedure
K-maps, Boolean algebra

75

Process Line Control Example

Statement of the Problem
Rods of varying length (+/-10%) travel on conveyor belt
Mechanical arm pushes rods within spec (+/-5%) to one side
Second arm pushes rods too long to other side
Rods too short stay on belt

3 light barriers (light source + photocell) as sensors

Design combinational logic to activate the arms

Understanding the Problem
Inputs are three sensors, outputs are two arm control signals

Assume sensor reads "1" when tripped, "0" otherwise

Call sensors A, B, C

Draw a picture!

76

Process Line Control Example (cont.)

Where to place the light sensors A, B, and C to distinguish among
the three cases?

Assume that A detects the leading edge of the rod on the conveyor

Spec

+ 5%

+10%

Too
Long

ROD

Spec

+ 5%

- 5%

Within
Spec

ROD

Spec

- 5%

- 10%

Too
Short

ROD

77

Process Line Control Example (cont.)

A

B

C

Spectification
- 5%

Specification
+ 5%

Too
Long

Too
Short

Within
Spec

A to B distance place apart at specification - 5%

A to C distance placed apart at specification +5%

78

Process Line Control Example (cont.)

A B C Meaning Accept Long
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

79

Combinational vs. Sequential Logic

Combinational logic
no feedback among inputs and outputs
outputs are a pure function of the inputs
e.g., seat belt light:

(Dbelt, Pbelt, Passenger) mapped into (Light)

Network implemented from logic gates.
The presence of feedback
distinguishes between sequential
and combinational networks.

-
-
-

X1
X2

Xn

Logic
Network

Z 1
Z 2

Z m

-
-
-

Logic
Circuit

Dbelt
Pbelt

Passenger

Seat Belt Light

80

Circuit Timing Behavior

Simple model: gates react after fixed delay

A

B

C

D

E

F

0

1

0

1

A
B C

D E F

81

Circuit can temporarily go to incorrect states

Must filter out temporary states

Hazards/Glitches

Copilot Autopilot Request

Pilot Autopilot Request

Pilot in Charge? Autopilot Engaged
A B

C

CAR

PIC

PAR

A

B

C

AE

82

Safe Sequential Circuits

Clocked elements on feedback, perhaps outputs
Clock signal synchronizes operation
Clocked elements hide glitches/hazards

Clock

-
-
-

X1
X2

Xn

Logic
Network

Z 1
Z 2

Z m

-
-
-

Clock

Data Valid ComputeCompute Valid Compute

83

Assembly Language

Readings: Chapter 2 (2.1-2.6, 2.8, 2.9, 2.13, 2.15), Appendix A.10

Assembly language
Simple, regular instructions – building blocks of C & other languages
Typically one-to-one mapping to machine language

Our goal
Understand the basics of assembly language
Help figure out what the processor needs to be able to do

Not our goal to teach complete assembly/machine language programming
Floating point
Procedure calls
Stacks & local variables

84

MIPS Assembly Language

The basic instructions have four components:
Operator name
Destination
1st operand
2nd operand

add <dst>, <src1>, <src2> # <dst> = <src1> + <src2>
sub <dst>, <src1>, <src2> # <dst> = <src1> - <src2>

Simple format: easy to implement in hardware

More complex: A = B + C + D – E

85

Operands & Storage

For speed, CPU has 32 general-purpose registers for storing most operands
For capacity, computer has large memory (64MB+)

Load/store operation moves information between registers and main memory
All other operations work on registers

Processor

Computer

Control

Datapath

Memory Devices

Input

OutputGPRs

86

Registers

32 registers for operands

Function return addressra31
Frame pointerfp30
Stack pointersp29
Pointer to global data areagp28

Don’t use themReserved kernel/OS$k0-k1$26-27
Not saved on callVolatile temporaries$t8-t9$24-25
Saved on callTemporaries (saved across calls)$s0-s7$16-23
Not saved on callVolatile temporaries$t0-t7$8-15

Function call parameters$a0-a3$4-7
Function return$v0-v1$2-3

Don’t use it!Reserved for assemblerat1
No-op on writeAlways 0$zero$0
CommentFunctionNameRegister

87

Basic Operations

(Note: just subset of all instructions)

Mathematic: add, sub, mult, div add $t0, $t1, $t2 # t0 = t1+t2

Unsigned (changes overflow condition) addu $t0, $t1, $t2 # t0 = t1+t2

Immediate (one input a constant) addi $t0, $t1, 100 # t0 = t1+100

Logical: and, or, nor, xor and $t0, $t1, $t2 # t0 = t1&t2

Immediate andi $t0, $t1, 7 # t0 = t1&b0111

Shift: left & right logical, arithmetic sllv $t0, $t1, $t2 # t0 = t1<<t2

Immediate sll $t0, $t1, 6 # t0 = t1<<6

Example: Take bits 6-4 of $t0 and make them bits 2-0 of $t1, zeros otherwise:

