Memory Organization

Viewed as a large, single-dimension array, with an address.
A memory address is an index into the array
"Byte addressing" means that the index points to a byte of memory.

<

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

o O & WO DN L O

8 bits of data

88

Memory Organization (cont.)

Bytes are nice, but most data items use larger "words"
For MIPS, a word is 32 bits or 4 bytes.

0
4
8
12

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

232 pytes with byte addresses from 0 to 232-1
230 words with byte addresses 0, 4, 8, ... 232-4

Words are aligned
l.e., what are the least 2 significant bits of a word address?

89

Addressing Objects: Endianess and Alignment

Big Endian: address of most significant byte = word address
(xx00 = Big End of word)

IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

Little Endian: address of least significant byte = word address
(xx00 = Little End of word)

Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

little endian byte O

3 2 1 0
mshb Isb
o 1 2 3
0 1 2 3
big endian byte 0 Aligned
Alignment: require that objects fall on address
that is multiple of their size. Not
Aligned

90

Data Storage

Characters: 8 bits (byte)
Integers: 32 bits (word)
Array. Sequence of locations
Pointer: Address

= new char[4];
y = new Int[10];

(/, \wﬂ\\“’\ﬂ

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015

i

15%

/‘A I'L\[.
oveoy

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031

91

Loads & Stores

Loads & Stores move data between memory and registers 1 é 4 \
All operations on registers, but too small to hold all data w %, t

Iw $t0, @iti) # $t0 = Memory[$t1+16] oo(y $'Hz “FH&IL
sw $t2, 8($t3) # Memory[$t3+8] = $t2 l\/J 41\’ (I /A{,l
General
Purpose (U\)C{'R (ot
Registers /
tlg 124 (L(‘@H’,
t2:;| 723
t3:;} 4

Note: Ibu & sb load & store bytes

92

