
88

Memory Organization

Viewed as a large, single-dimension array, with an address.
A memory address is an index into the array
"Byte addressing" means that the index points to a byte of memory.

0
1
2
3
4
5
6
...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data



89

Memory Organization (cont.)

Bytes are nice, but most data items use larger "words"
For MIPS, a word is 32 bits or 4 bytes.

232 bytes with byte addresses from 0 to 232-1
230 words with byte addresses 0, 4, 8, ... 232-4
Words are aligned

i.e., what are the  least 2 significant bits of a word address?

...

0
4
8

12

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data



90

Addressing Objects: Endianess and Alignment

Big Endian: address of most significant  byte = word address 
(xx00 = Big End of word)
IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

Little Endian: address of least significant  byte = word address
(xx00 = Little End of word)
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

msb lsb
3          2          1           0

little endian byte 0

0          1          2           3
big endian byte 0

Alignment: require that objects fall on address 
that is multiple of  their size.

0      1      2      3

Aligned

Not
Aligned



91

Data Storage

Characters: 8 bits (byte)
Integers: 32 bits (word)
Array: Sequence of locations
Pointer: Address

char a = ‘G’;
int x = 258;
char *b;
int *y;
b = new char[4];
y = new int[10];

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

1014
1013

1015

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028

1030
1029

1031



92

Loads & Stores

Loads & Stores move data between memory and registers
All operations on registers, but too small to hold all data

lw $t0, 16($t1) # $t0 = Memory[$t1+16]

sw $t2, 8($t3) # Memory[$t3+8] = $t2

Note: lbu & sb load & store bytes

Store

Load
General
Purpose
Registers

t0:
t1:
t2:
t3:

124
723
4

Memory

12:

140: 66


