
223

Memory Hierarchy: Caches, Virtual Memory

Big memories are slow

Fast memories are small

Need to get fast, big memories

Processor

Computer

Control

Datapath

Memory Devices

Input

Output

224

Random Access Memory

Dynamic Random Access Memory (DRAM)
High density, low power, cheap, but slow
Dynamic since data must be “refreshed” regularly
Random Access since arbitrary memory locations can be read

Static Random Access Memory
Low density, high power, expensive
Static since data held as long as power is on
Fast access time, often 2 to 10 times faster than DRAM

$0.10-$0.20(10-20)x106nsDisk

$5-$1060-120nsDRAM

$100-$2005-25nsSRAM
$/MB in 1997Access TimeTechnology

225

Technology Trends

Processor-DRAM Memory Gap (latency)

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

“Moore’s Law”

226

The Problem

The Von Neumann Bottleneck
Logic gets faster
Memory capacity gets larger
Memory speed is not keeping up with logic

Cost vs. Performance
Fast memory is expensive
Slow memory can significantly affect performance

Design Philosophy
Use a hybrid approach that uses aspects of both
Keep frequently used things in a small amount of fast/expensive memory

“Cache”
Place everything else in slower/inexpensive memory (even disk)
Make the common case fast

227

Locality

Programs access a relatively small portion of the address space at a time

Types of Locality
Temporal Locality – If an item has been accessed recently, it will tend to be

accessed again soon
Spatial Locality – If an item has been accessed recently, nearby items will

tend to be accessed soon

Locality guides caching

char *index = string;
while (*index != 0) { /* C strings end in 0 */

if (*index >= ‘a’ && *index <= ‘z’)
*index = *index +(‘A’ - ‘a’);

index++;
}

228

The Solution

By taking advantage of the principle of locality:
Provide as much memory as is available in the cheapest technology.
Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hip
C

ache

Name Register Cache Main Memory Disk Memory

Speed <1ns <10ns 60ns 10 ms
Size 100 Bs KBs MBs GBs

229

Cache Terminology

Block – Minimum unit of information transfer between levels of the hierarchy
Block addressing varies by technology at each level
Blocks are moved one level at a time

Upper vs. lower level – “upper” is closer to CPU, “lower” is futher away
Hit – Data appears in a block in that level

Hit rate – percent of accesses hitting in that level
Hit time – Time to access this level

Hit time = Access time + Time to determine hit/miss
Miss – Data does not appear in that level and must be fetched from lower level

Miss rate – percent of misses at that level = (1 – hit rate)
Miss penalty – Overhead in getting data from a lower level

Miss penalty = Lower level access time + Replacement time + Time to deliver to processor
Miss penalty is usually MUCH larger than the hit time

230

Cache Access Time

Average access time
Access time = (hit time) + (miss penalty)x(miss rate)

Want high hit rate & low hit time, since miss penalty is large

Average Memory Access Time (AMAT)
Apply average access time to entire hierarchy.

231

Cache Access Time Example

Note: Numbers are local hit rates – the ratio of access that go to that cache that
hit (remember, higher levels filter accesses to lower levels)

99%50 cyclesMain Memory

100%

90%

95%
Hit Rate Access Time

50,000 cyclesDisk

10 cyclesL2

1 cycleL1
Hit TimeLevel

232

Handling A Cache Miss

Processor expects a cache hit (1 cycle), so no effect on hit.
Instruction Miss

1. Send the original PC to the memory
2. Instruct memory to perform a read and wait (no write enables)
3. Write the result to the appropriate cache line
4. Restart the instruction

Data Miss
1. Stall the pipeline (freeze following instructions)
2. Instruct memory to perform a read and wait
3. Return the result from memory and allow the pipeline to continue

233

Exploiting Locality

Spatial locality
Move blocks consisting of multiple contiguous words to upper level

Temporal locality
Keep more recently accessed items closer to the processor
When we must evict items to make room for new ones, attempt to keep

more recently accessed items

234

Cache Arrangement

How should the data in the cache be organized?
Caches are smaller than the full memory, so multiple addresses must map
to the same cache “line”

Direct Mapped – Memory addresses map to particular location in that cache

Fully Associative – Data can be placed anywhere in the cache

N-way Set Associative – Data can be placed in a limited number of places in
the cache depending upon the memory address

235

Direct Mapped Cache

4 byte direct mapped cache with 1 byte blocks
Optimize for spatial locality (close blocks likely to be accessed soon)

0
1
2
3
4
5
6
7
8
9
A
B
C

E
D

F

0
1
2
3

Memory Address

Cache
Address

236

Finding A Block

Each location in the cache can contain a number of different memory locations
Cache 0 could hold 0, 4, 8, 12, …

We add a tag to each cache entry to identify which address it currently contains
What must we store?

237

Cache Tag & Index

Assume 2n byte direct mapped cache with 1 byte blocks

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Cache Tag = 57 Cache Index=03

0
1
2
3
4
5
6
7

2n-1

… … … …
Valid Bit Tag Data

238

Cache Access Example

Assume 4 byte cache
Access pattern:
00001
00110
00001
11010
00110

0
1
2
3

Valid Bit Tag Data

239

Cache Access Example (cont.)

Assume 4 byte cache
Access pattern:
00001
00110
00001
11010
00110

0
1
2
3

Valid Bit Tag Data

240

Cache Access Example (cont. 2)

Assume 4 byte cache
Access pattern:
00001
00110
00001
11010
00110

0
1
2
3

Valid Bit Tag Data

241

Cache Size Example

How many total bits are requires for a direct-mapped cache with 64 KB of data
and 1-byte blocks, assuming a 32-bit address?

Index bits:

Bits/block:
Data:
Valid:
Tag:

Total size:

