
ENGR 3410: Midterm

Mark L. Chang

November 7, 2005

Instructions

This is a test. This is only a test.

You have 3 hours to complete this exam. You should take this exam in one
sitting. You should not need anywhere near 3 hours. You may use any sources
for solving your problems except for other people. This includes the internet,
GoogleTM, a calculator, lecture notes, and perhaps most importantly, the text-
book.

The exam is due at 5PM, Friday, November 11th, 2005. You may slide the exam
under my door in East Hall, or hand it to me directly. Partial credit is given,
so please show all work. Be clear with any assumptions you make.

1

Problem 0

Take the following bit pattern:
1010 1100 1010 1000 1111 1111 1111 1101

what does it represent, if we assume that the number is:

• a two’s complement integer?

• an unsigned integer?

• a single precision floating point number?

• a MIPS instruction?

You might find Appendix A handy, especially page A-50 and beyond. You
will find the appendix in the following folder on the Olin network:

\\fsvs01\StuFac\CompArch\Book CD\Content\COD3e\CDSections

2

Problem 1

Bono (of U2 fame) wrote a program to model microfluidic flow that takes 100
seconds to run on the 1GHz machine in my office. Of course, The Edge (also
of U2 fame) tweaks the compiler to optimize Bono’s program by replacing all
instances of multiplying a value by 4 (ie. n ∗ 4) with two sequential adds (m =
n + n, p = m + m).

On this machine, the CPI of a multiply instruction is 5, and the CPI of an add
instruction is 1. After The Edge recompiles the program with the optimization,
it runs in 85 seconds on the same machine.

Impressed, Bono tries to stump The Edge by asking him this question: How
many multiplies were replaced by the new compiler? Help The Edge out by
showing an answer to Bono’s question.

3

Problem 2

The instruction swap $rs, $rt can be implemented with the following three
MIPS instructions:

addi $rd, $rs, 0
addi $rs, $rt, 0
addi $rt, $rd, 0

Axl Rose, among his many musical talents, is a fan of hardware design. He
tells you that he can add hardware support for the swap instruction to our
single-cycle CPU, but that it would increase the clock period by 15%. For a
given program, what must the percentage of swap instructions be in order to
recommend using Axl’s modified CPU design?

4

Problem 3

Natalie Merchant, the former 10k Maniac, wants to break with RISC tradi-
tion and implement an arithmetic instruction that can directly access memory.
Specifically, she wants the following instruction:

addm $1, 100($2) # $1 = $1 + Memory[$2 + 100]
addm rt, imm16(rs)

What modifications to our single-cycle processor (if any) are necessary to
support Natalie’s addm instruction? Show the RTL, any data path changes,
and settings for control signals. If it is not possible to implement, explain why.
Single cycle worksheet is at the end of this exam.

5

Problem 4

Not be left out of the party, Sheryl Crow, the former school teacher, wants our
multi-cycle CPU to be modified to support the addm instruction. Show the
RTL, any data path changes, and control signal modifications. You can use the
multicycle data path and control worksheets at the end of the exam.

addm $1, 100($2) # $1 = $1 + Memory[$2 + 100]
addm rt, imm16(rs)

6

Problem 5

Scott Weiland, formerly of Stone Temple Pilots and currently with the surpris-
ingly good Velvet Revolver, has a wacky idea. Instead of doing a load word
with the source address coming from a register, he wants to implement a new
instruction, ldni, load next indirect. This instruction performs a load from
memory, however, the address to load from is stored in memory (not a reg-
ister) immediately following this instruction. Think of it as a “double wide”
instruction.

Scott wants to know what changes you need to make to the multi-cycle CPU
we did in class, both in terms of data path and control, as necessary. He’d also
love to see some RTL.

7

SignE
xtnd

WrEn Addr
Din Dout

Data
Memory

Instruction
Fetch
Unit

Rs Rt Rs Rt Rd Imm16

imm16

Instructions[31:0]

[25:21]

[20:16]

[15:11]

[15:0]

Branch
Jump

ALUSrc

RegDst

Rd Rt

ALUcntrl

Aw Aa Ab Da
Dw Db

Register
WrEn FileRegWr

MemWr MemToReg
Zero

SignE
xtnd

PC

<<2

M
D

R

A
L

U
O

utB
A

WrEn
Addr Dout

Memory
Din

IR

R
sR
t

R
d

Im
m

16

Aw Ab Aa
Da

Registers
Dw WrEn Db

4

MemIn
Mem_WE IR_WEPC_WE

RegIn

Dst

Reg_WE

ALUSrcA

ALUSrcB

ALUOp
PCSrc

ALUMDRPCRt[20:16]<<2A

ALUoutALUoutALUoutRd[15:11]SEPC

B

5Lo

Reg

ALUWE

3Br

3Rt

4Rt

3St

4St

3Lo

4Lo

OpMem IR SrcA

4

SrcB Dest MemIn RegIn

2

1

PCSrcPCState

