
ENGR 3410: Lab #2

MIPS 32-bit ALU

Assigned: October 12, 2005
Due: October 31, 2005

1 Introduction

The purpose of this lab is to create the arithmetic-logic unit of your MIPS-
style microprocessor. You will be designing and implementing a simple 32-bit
MIPS ALU. The ALU functions to implement are ADD, SUB, XOR, and SLT.
Examples of this type of architecture are shown in our textbook. The overall
block diagram of our design will look a little like the figure below (Fig. 1).

2 Check-in Required

My estimate for completion of this lab is approximately 20-30 person-hours.
This lab is in some ways harder, and some ways easier than the last lab. In
order to keep you on track, your team must demonstrate what you have done,
in person, on both October 19th, and October 26th, in class. It will be a quick
assessment, and you will be graded based upon your overall progress toward the
final deliverable.

One way to easily break it up is to develop the ADD/SUB in the first week,
the XOR/SLT in the following week, and put it all together in the last several
days.

3 Implementation

The ALU has 7 ports. These ports are the two input ports A and B, the output
port, ALU control, zero detect output, overflow detect output, and the carryout
output. The ALU control line assignments are given below. Please use these
inputs to select the ALU function. Remember that the turn-in format and
design requirements from the previous lab apply to this lab as well.

1



Figure 1: A block diagram of the ALU.

ALU CONTROL LINES FUNCTION
00 ADD
01 SUB
10 XOR
11 SLT

4 Lab requirements

• Use the file “alustim.v” as your test bench. You can find this file on the
wiki. You should alter the testing as necessary to make sure your unit
works. I have my own test bench for use during the demos, so you must
make sure your ALU takes the same inputs and outputs, in the same order,
as is presented in the provided test bench. Write a bunch of tests!

2



• All logic must be gate level, structural. That is, built from explicit AND,
OR, NAND, NOR, XOR, etc. gates. No assign statements (except an
assign to set a wire to a constant value), CASE statements, etc.

• You may use behavioral Verilog for your test benches.

• All gates have a delay of 50 units. Processor performance won’t be a
grading criteria for the class (unless you do really ridiculous things), but
you need delay to show how things behave.

5 Deliverables

For this lab you will demo the functionality of your ALU and must also turn in,
during or before class, paper or electronic versions of the following:

• Your code (with test benches)

• A full schematic at the gate level. It will likely be multi-level (i.e. boxes on
an upper level have a lower-level sheet with the details). Since this diagram
will reappear in all subsequent labs, photocopy it or do it electronically.

DEMOS ARE REQUIRED, WHETHER YOUR LAB WORKS
OR NOT

If you do not demo your assignment, you automatically get a 0. Missing
your demo slot without prior approval will impose a late penalty on the entire
lab.

6 Hints and Tips

Some of these are repeated from the last lab because they are so important.

• Test EACH MODULE you make. There is literally 0% chance that you
will write all these pieces without testing them, then slap them together
into an ALU and it will just work. Add to the fact that this is now a
conglomeration of hundreds if not thousands of gates, it is hard to debug
when it inevitably does not work.

• As with the last lab, the provided test bench is really just a skeleton for
something you should be writing to test each module you make. The
testing here is far from exhaustive, and far from acceptable. Heck, it
doesn’t even try and test the XOR or SLT instructions. This is deliberate.
I give you enough examples to see how to construct the tests, while having
you figure out the test cases yourself.

• Check for typos. Verilog won’t really tell you when you’ve used a signal
that doesn’t exist.

• Use the concatenation operation. Check the verilog tutorial.

3


