
17

Introduction to Digital Logic

18

Motivation

Electronics an increasing part of our lives
Computers & the Internet
Car electronics
Robots
Electrical Appliances
Telephones

Class is an exercise in digital logic design & implementation

19

Example: Car Electronics

Door ajar light (driver door, passenger door):

High-beam indicator (lights, high beam selected):

20

Example: Car Electronics (cont.)

Seat Belt Light (driver belt in):

Seat Belt Light (driver belt in, passenger belt in, passenger present):

21

Basic Logic Gates
AND: If A and B are True, then Out is True

OR: If A or B is True, or both, then Out is True

Inverter (NOT): If A is False, then Out is True

A
B Out

Out

Out

A
B

A

22

Digital vs. Analog

Analog:
values vary over a broad range
continuously

Digital:
only assumes discrete values

+5

V

–5

T ime

+5

V

–5

1 0 1

T ime

23

Analog systems:
slight error in input yields large error in output

Digital systems:
more accurate and reliable
readily available as self-contained, easy to cascade building blocks

Computers use digital circuits internally
Interface circuits (i.e., sensors & actuators) often analog

Advantages of Digital Circuits

24

Binary/Boolean Logic

• Two discrete values:
yes, on, 5 volts, TRUE, "1"
no, off, 0 volts, FALSE, "0"

• Advantage of binary systems:
rigorous mathematical foundation based on logic

the three preconditions must be true to imply the conclusion

IF the garage door is open
AND the car is running
THEN the car can be backed out of the garage

IF the garage door is open
AND the car is running
THEN the car can be backed out of the garage

both the door must
be open and the car
running before I can
back out

IF passenger is in the car
AND passenger belt is in
AND driver belt is in
THEN we can turn off the fasten seat belt light

IF passenger is in the car
AND passenger belt is in
AND driver belt is in
THEN we can turn off the fasten seat belt light

25

Combinational vs. Sequential Logic

No feedback among inputs and outputs.
Outputs are a function of the inputs only.

Network implemented from logic gates.
The presence of feedback
distinguishes between sequential
and combinational networks.

-
-
-

X1
X2

Xn

Logic
Network

Z 1
Z 2

Z m

-
-
-

Sequential logic

-
-
-

X1
X2

Xn

Logic
Network

Z 1
Z 2

Z m

-
-
-

Combinational logic

26

Black Box (Majority)

Given a design problem, first determine the function
Consider the unknown combination circuit a “black box”

A B C

Out

Truth Table

27

“Black Box” Design & Truth Tables

Given an idea of a desired circuit, implement it
Example: Odd parity - inputs: A, B, C, output: Out

28

Truth Tables

Algebra: variables, values, operations

In Boolean algebra, the values are the symbols 0 and 1
If a logic statement is false, it has value 0
If a logic statement is true, it has value 1

Operations: AND, OR, NOT

0
0
1
1

X Y X AND Y

0
1
0
1

0
0
0
1

X Y X OR Y

0
0
1
1

0
1
0
1

0
1
1
1

X NOT X
0
1

1
0

29

Boolean Equations

Boolean Algebra
values: 0, 1
variables: A, B, C, . . ., X, Y, Z
operations: NOT, AND, OR, . . .

NOT X is written as X
X AND Y is written as X & Y, or sometimes X Y
X OR Y is written as X + Y

A

0
0
1
1

B

0
1
0
1

Sum

0
1
1
0

Carry

0
0
0
1

Sum = A B + A B

Carry = A B

OR'd together product terms
for each truth table

row where the function is 1

if input variable is 0, it appears in
complemented form;

if 1, it appears uncomplemented

Deriving Boolean equations from truth tables:

30

Boolean Algebra

A

0
0
0
0
1
1
1
1

B

0
0
1
1
0
0
1
1

Cin

0
1
0
1
0
1
0
1

Sum

0
1
1
0
1
0
0
1

Cout

0
0
0
1
0
1
1
1

Another example:

Sum = A B Cin + A B Cin + A B Cin + A B Cin

Cout = A B Cin + A B Cin + A B Cin + A B Cin

31

Boolean Algebra

Reducing the complexity of Boolean equations

Laws of Boolean algebra can be applied to full adder's carry out
function to derive the following simplified expression:

Cout = A Cin + B Cin + A B

Verify equivalence with the original Carry Out truth table:

place a 1 in each truth table row where the product term is true

each product term in the above equation covers exactly two rows
in the truth table; several rows are "covered" by more than one term

A
0
0
0
0
1
1
1
1

C in
0
1
0
1
0
1
0
1

B
0
0
1
1
0
0
1
1

C out
0
0
0
1
0
1
1
1

B C in

A C in

A B

32

Representations of Boolean Functions

Boolean Function: F = X + YZ

Truth Table:
X Y Z F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Circuit Diagram:

33

Why Boolean Algebra/Logic Minimization?

Logic Minimization: reduce complexity of the gate level implementation

• reduce number of literals (gate inputs)

• reduce number of gates

• reduce number of levels of gates

fewer inputs implies faster gates in some technologies

fan-ins (number of gate inputs) are limited in some technologies

fewer levels of gates implies reduced signal propagation delays

number of gates (or gate packages) influences manufacturing costs

34

Basic Boolean Identities:

X + 0 = X * 1 =

X + 1 = X * 0 =

X + X = X * X =

X + X = X * X =

X =

35

Basic Laws

Commutative Law:
X + Y = Y + X XY = YX

Associative Law:
X+(Y+Z) = (X+Y)+Z X(YZ)=(XY)Z

Distributive Law:
X(Y+Z) = XY + XZ X+YZ = (X+Y)(X+Z)

36

Boolean Manipulations

Boolean Function: F = XYZ + XY + XYZ

Truth Table:

X Y Z F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Reduce Function:

37

Advanced Laws

X+XY =
XY + XY =
X+XY =
X(X+Y) =
(X+Y)(X+Y) =
X(X+Y) =

38

Boolean Manipulations (cont.)

Boolean Function: F = XYZ + XZ

Truth Table:
X Y Z F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Reduce Function:

39

Boolean Manipulations (cont.)

Boolean Function: F = (X+Y+XY)(XY+XZ+YZ)

Truth Table:
X Y Z F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Reduce Function:

40

DeMorgan’s Law

(X + Y) = X * Y

(X * Y) = X + Y

Example:
Z = A B C + A B C + A B C + A B C

Z = (A + B + C) * (A + B + C) * (A + B + C) * (A + B + C)

DeMorgan's Law can be used to convert AND/OR expressions
to OR/AND expressions

DeMorgan's Law can be used to convert AND/OR expressions
to OR/AND expressions

X
0
0
1
1

Y
0
1
0
1

X
1
1
0
0

Y
1
0
1
0

X + Y X•Y

X
0
0
1
1

Y
0
1
0
1

X
1
1
0
0

Y
1
0
1
0

X + Y X•Y

41

DeMorgan’s Law example

If F = (XY+Z)(Y+XZ)(XY+Z),

F =

42

NAND and NOR Gates

NAND Gate: NOT(AND(A, B))

NOR Gate: NOT(OR(A, B))

0
0
1
1

X Y

0
1
0
1

1
1
1
0

X NAND Y

X Y

0
0
1
1

0
1
0
1

1
0
0
0

X NOR Y

43

NAND and NOR Gates

NAND and NOR gates are universal
can implement all the basic gates (AND, OR, NOT)

NAND NOR

NOT

AND

OR

44

Bubble Manipulation

Bubble Matching

DeMorgan’s Law

45

XOR and XNOR Gates

XOR Gate: Z=1 if X is different from Y

XNOR Gate: Z=1 if X is the same as Y

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

X
Y Z

ZX
Y

46

Boolean Equations to Circuit Diagrams

F = XYZ + XY + XYZ

F = XY + X(WZ + WZ)

