Introduction to Digital Logic

Motivation

Electronics an increasing part of our lives
Computers \& the Internet
Car electronics
Robots
Electrical Appliances
Telephones
Class is an exercise in digital logic design \& implementation

Example: Car Electronics
Door ajar light (driver door, passenger door):

Example: Car Electronics (cont.)
Seat Belt Light (driver belt in):

Seat Belt Light (driver belt in, passenger belt in, passenger present):

$$
\begin{aligned}
& \text { Passenger Hen } \\
& \text { Cess Belting Not }{ }^{2} 5 \overline{\text { AND }} \\
& \text { drivel } \beta_{\text {alt }} \text { IN }
\end{aligned}
$$

Basic Logic Gates
AND: If A and B are True, then Out is True
SAND

$A B$	0 UT
00	0
01	0
10	0
11	1

OR: If A or B is True, or both, then Out is True

$$
\begin{aligned}
& \mathrm{A} \\
& \mathrm{~B} \\
& \mathrm{Out}
\end{aligned}
$$

$A B$	out
00	0
01	1
10	1
10	1

Inverter (NOT): If A is False, then Out is True

$$
A-D^{-} \text {Out }
$$

Digital vs. Analog

Digital:
only assumes discrete values

Analog:
values vary over a broad range continuously

Advantages of Digital Circuits

Analog systems:
slight error in input yields large error in output

Digital systems:
more accurate and reliable
readily available as self-contained, easy to cascade building blocks

Computers use digital circuits internally
Interface circuits (i.e., sensors \& actuators) often analog

Binary/Boolean Logic

- Two discrete values:
yes, on, 5 volts, TRUE, "1"
no, off, 0 volts, FALSE, " 0 "
- Advantage of binary systems:
rigorous mathematical foundation based on logic

IF the garage door is open
AND the car is running
THEN the car can be backed out of the garage
both the door must be open and the car running before I can back out

```
IF passenger is in the car
AND passenger belt is in
AND driver belt is in
THEN we can turn off the fasten seat belt light
```

the three preconditions must be true to imply the conclusion

Combinational vs. Sequential Logic

Sequential logic

Network implemented from logic gates.
The presence of feedback distinguishes between sequential and combinational networks.

No feedback among inputs and outputs. Outputs are a function of the inputs only.

Black Box (Majority)

Given a design problem, first determine the function
Consider the unknown combination circuit a "black box"

Truth Table

"Black Box" Design \& Truth Tables
Given an idea of a desired circuit, implement it

$$
A \cdot B=A N D=D
$$

Example: Odd parity - inputs: A, B, C, output: Out $A+B=O R=D$ rall G's

$$
\text { OUT }=\bar{A} \bar{B} C+\bar{A} \overline{B C}+\overline{A B} \bar{C}+A B C
$$

A	B	C	047
0	0	0	0
-	-	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	2	1	0
1	1	0	0
1	1	1	1

Truth Tables

Algebra: variables, values, operations
In Boolean algebra, the values are the symbols 0 and 1
If a logic statement is false, it has value 0
If a logic statement is true, it has value 1
Operations: AND, OR, NOT

X	Y	X AND Y
0	0	0
0	1	0
1	0	0
1	1	1

X	NOT X
0	1
1	0

X	Y	X OR Y
0	0	0
0	1	1
1	0	1
1	1	1

Boolean Equations

```
Boolean Algebra
values: 0, 1
variables: A, B, C, ..., X, Y, Z
operations: NOT, AND, OR, . . .
```

NOT X is written as \bar{X}
X AND Y is written as $X \& Y$, or sometimes $X Y$
X OR Y is written as $X+Y$

Deriving Boolean equations from truth tables:

A	B	Sum	Carry	+ AB
	0	0	0	
	1	1	0	
1	0	1	0	
1	1	0		if inpu if 1 , it

Carry = A B

Boolean Algebra

Another example:

Boolean Algebra

Reducing the complexity of Boolean equations
Laws of Boolean algebra can be applied to full adder's carry out function to derive the following simplified expression:

Verify equivalence with the original Carry Out truth table:
place a 1 in each truth table row where the product term is true
each product term in the above equation covers exactly two rows in the truth table; several rows are "covered" by more than one term

Representations of Boolean Functions

Why Boolean Algebra/Logic Minimization?

Logic Minimization: reduce complexity of the gate level implementation

- reduce number of literals (gate inputs)
- reduce number of gates
- reduce number of levels of gates
fewer inputs implies faster gates in some technologies
fan-ins (number of gate inputs) are limited in some technologies
fewer levels of gates implies reduced signal propagation delays
number of gates (or gate packages) influences manufacturing costs

Basic Boolean Identities:

$$
\begin{array}{ll}
x+0=x & x * 1=x \\
x+1=1 & x * 0=0 \\
x+x=x & x * x=X \\
x+\bar{X}=1 & x * \bar{X}=0 \\
\bar{x}=x &
\end{array}
$$

Basic Laws

Commutative Law:
$X+Y=Y+X$

Associative Law:
$X+(Y+Z)=(X+Y)+Z \quad X(Y Z)=(X Y) Z$
Distributive Law:
$X(Y+Z)=X Y+X Z$
$X+Y Z=(X+Y)(X+Z)$

Boolean Manipulations

Boolean Function: $F=X Y Z+\bar{X} Y+X Y \bar{Z}$

Truth Table:

X	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	$=y(x z+\bar{x} y+x y \bar{z})$
	$=y(x(z+\bar{z})+\bar{x})$		
	$=y(x(1)+\bar{x})$		
	$=y(x+\bar{x})$		
	$=y(1)$		
	$=y$		

Advanced Laws

$$
=x y
$$

$$
\begin{aligned}
& X+X Y=x(1+y)=x(1)=x \\
& \text { - } X Y+X \bar{Y}=X(y+\bar{y})=x(c)=x \\
& \text { - } X+\bar{X} Y=x+y \\
& \text { - } \mathrm{X}(\mathrm{X}+\mathrm{Y})=\mathrm{X} x+x y=x+x y=\otimes \\
& (\mathrm{X}+\mathrm{Y})(\mathrm{X}+\overline{\mathrm{Y}})=x(x+y)+\bar{y}(x+y)=\left(x x /+\begin{array}{c}
\left.{ }^{x} x y\right)+x \bar{y}+\bar{y} y= \\
\mathrm{X}
\end{array}\right) \\
& X(\bar{X}+Y)=x \bar{x}+x y \\
& =0+x y \\
& =x+x \bar{y}+\bar{y} y \\
& =x+x y \\
& =x(1+\bar{y}) \\
& =\otimes
\end{aligned}
$$

Boolean Manipulations (cont.)

Boolean Function: $F=\bar{X} Y Z+X Z$

Truth Table:

X	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Reduce Function:

$$
\begin{aligned}
F & =z(\bar{x} y+x) \\
& =z(x+y)
\end{aligned}
$$

Boolean Manipulations (cont.)
Boolean Function: $F=(X+\bar{Y}+X \bar{Y})(X Y+\bar{X} Z+Y Z)$

Truth Table:

X	Y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Reduce Function:

$$
\begin{aligned}
& F= x x y \\
&+x \bar{x} z+x y z+x y y^{2} \\
&+\bar{x} \bar{y} z+y \bar{y} z^{\prime} \\
&+x \bar{y} \check{x} y+x \bar{y} \bar{x} z+x \bar{y} y z \\
&= x x y+x y z+\bar{x} \bar{y} z \\
&= x y+x y z+\bar{x} \bar{y} z \\
&=x y(1+z)+\bar{x} \bar{y} z \\
&= x y+\bar{x} \bar{y} z
\end{aligned}
$$

DeMorgan's Law

$$
\begin{aligned}
& \overline{(X+Y)}=\bar{X} * \bar{Y} \\
& \overline{(X * Y)}=\bar{X}+\bar{Y}
\end{aligned}
$$

$\left.\begin{array}{cccc|cc}X & Y & \bar{X} & \bar{Y} & \overline{X+Y} & \bar{X} \cdot \bar{Y} \\ \hline 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ \\ X & Y & \bar{X} & \bar{Y} & \bar{X} \cdot Y & \bar{X}+\bar{Y} \\ \hline 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0\end{array}\right\}$

DeMorgan's Law can be used to convert AND/OR expressions to ORIAND expressions

Example:

$$
\begin{aligned}
& Z=\bar{A} \bar{B} C+\bar{A} B C+A \bar{B} C+A B \bar{C} \\
& \bar{Z}=(A+B+\bar{C}) *(A+\bar{B}+\bar{C}) *(\bar{A}+B+\bar{C}) * \overline{(A}+\bar{B}+C)
\end{aligned}
$$

DeMorgan's Law example

$$
\begin{aligned}
\text { If } \mathrm{F} & =(\mathrm{XY}+\mathrm{Z})(\overline{\mathrm{Y}}+\overline{\mathrm{X}} \mathrm{Z})(\mathrm{X} \overline{\mathrm{Y}}+\overline{\mathrm{Z}}), \\
\overline{\mathrm{F}} & =\overline{(x y+z)(\bar{y}+\bar{x} z)(x \bar{y}+\bar{z})} \\
& =\overline{(x y+z)}+\overline{(\bar{y}+\bar{x} z)}+\overline{(x \bar{y}+\bar{z})} \\
& =(\overline{x y})(\bar{z})+\bar{y} \cdot \overline{\bar{x} z}+\overline{x \bar{y}} \cdot \bar{z} \\
& =(\bar{x}+\bar{y}) \bar{z}+y(\overline{\bar{x}}+\bar{z})+(\bar{x}+\bar{y}) \cdot z \\
& =(\bar{x}+\bar{y}) \bar{z}+y(x+\bar{z})+(\bar{x}+y) z
\end{aligned}
$$

NAND and NOR Gates

NAND Gate: NOT(AND(A, B))

X	Y	X NAND Y
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate: $\operatorname{NOT(OR(A,B))~}$

X	Y	X NOR Y
0	0	1
0	1	0
1	0	0
1	1	0

NAND and NOR Gates

NAND and NOR gates are universal
can implement all the basic gates (AND, OR, NOT)
WAND

NOT
NOR

AND

Bubble Manipulation
Bubble Matching

$$
=D_{0}=D_{0}-0=D
$$

DeMorgan's Law

XOR and XNOR Gates

XOR Gate: $Z=1$ if X is different from Y

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	0

XNOR Gate: $Z=1$ if X is the same as Y

X	Y	Z
0	0	1
0	1	0
1	0	0
1	1	1

Boolean Equations to Circuit Diagrams

$$
\begin{aligned}
F & =X Y Z+\bar{X} Y+X Y \bar{Z} \\
& =y(x z+\bar{x}+x \bar{z}) \quad y \rightarrow F \\
& =y(x+x) \\
& =y
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F} & =X Y+X(W Z+W \bar{Z}) \\
& =x y+x w \\
& =x(y+w)
\end{aligned}
$$

