Combinational Logic Design Process

- 1. Understand the Problem what is the circuit supposed to do? write down inputs (data, control) and outputs draw block diagram or other picture
- 2. Formulate the Problem in terms of a truth table or other suitable design representation truth table, Boolean algebra, etc.
- 3. Choose Implementation Target PAL, PLA, Mux, Decoder, Discrete Gates
- 4. Follow Implementation Procedure K-maps, Boolean algebra

Statement of the Problem

Rods of varying length (+/-10%) travel on conveyor belt Mechanical arm pushes rods within spec (+/-5%) to one side Second arm pushes rods too long to other side Rods too short stay on belt

3 light barriers (light source + photocell) as sensors

Design combinational logic to activate the arms

Understanding the Problem

Inputs are three sensors, outputs are two arm control signals

Assume sensor reads "1" when tripped, "0" otherwise

Call sensors A, B, C

Draw a picture!

Process Line Control Example (cont.)

Where to place the light sensors A, B, and C to distinguish among the three cases?

Assume that A detects the leading edge of the rod on the conveyor

Process Line Control Example (cont.)

A to B distance place apart at specification - 5%

A to C distance placed apart at specification +5%

Process Line Control Example (cont.)

А	В	С	Meaning	Accept	Long
0	0	0	NO bar	x/0	0/X
0	0	1	Rod arriving	O	0
0	1	0	?)	0	C
0	1	1	Arriving	Ö	0
1	0	0	Too sholt	0	0
1	0	1	7.	0	0
1	1	0	just vight	Ţ	0
1	1	1	long	0	

Accept = ABC Lang = ABC

Combinational vs. Sequential Logic

Circuit Timing Behavior

80

Hazards/Glitches

Circuit can temporarily go to incorrect states

Safe Sequential Circuits

Clocked elements on feedback, perhaps outputs Clock signal synchronizes operation Clocked elements hide glitches/hazards

