
223

Memory Hierarchy: Caches, Virtual Memory

Big memories are slow

Fast memories are small

Need to get fast, big memories

Processor

Computer

Control

Datapath

Memory Devices

Input

Output

224

Random Access Memory

Dynamic Random Access Memory (DRAM)
High density, low power, cheap, but slow
Dynamic since data must be “refreshed” regularly
Random Access since arbitrary memory locations can be read

Static Random Access Memory
Low density, high power, expensive
Static since data held as long as power is on
Fast access time, often 2 to 10 times faster than DRAM

$0.10-$0.20(10-20)x106nsDisk

$5-$1060-120nsDRAM

$100-$2005-25nsSRAM
$/MB in 1997Access TimeTechnology

225

Technology Trends

Processor-DRAM Memory Gap (latency)

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

“Moore’s Law”

226

The Problem

The Von Neumann Bottleneck
Logic gets faster
Memory capacity gets larger
Memory speed is not keeping up with logic

Cost vs. Performance
Fast memory is expensive
Slow memory can significantly affect performance

Design Philosophy
Use a hybrid approach that uses aspects of both
Keep frequently used things in a small amount of fast/expensive memory

“Cache”
Place everything else in slower/inexpensive memory (even disk)
Make the common case fast

227

Locality

Programs access a relatively small portion of the address space at a time

Types of Locality
Temporal Locality – If an item has been accessed recently, it will tend to be

accessed again soon
Spatial Locality – If an item has been accessed recently, nearby items will

tend to be accessed soon

Locality guides caching

char *index = string;
while (*index != 0) { /* C strings end in 0 */

if (*index >= ‘a’ && *index <= ‘z’)
*index = *index +(‘A’ - ‘a’);

index++;
}

228

The Solution

By taking advantage of the principle of locality:
Provide as much memory as is available in the cheapest technology.
Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hip
C

ache

Name Register Cache Main Memory Disk Memory

Speed <1ns <10ns 60ns 10 ms
Size 100 Bs KBs MBs GBs

229

Cache Terminology

Block – Minimum unit of information transfer between levels of the hierarchy
Block addressing varies by technology at each level
Blocks are moved one level at a time

Upper vs. lower level – “upper” is closer to CPU, “lower” is futher away
Hit – Data appears in a block in that level

Hit rate – percent of accesses hitting in that level
Hit time – Time to access this level

Hit time = Access time + Time to determine hit/miss
Miss – Data does not appear in that level and must be fetched from lower level

Miss rate – percent of misses at that level = (1 – hit rate)
Miss penalty – Overhead in getting data from a lower level

Miss penalty = Lower level access time + Replacement time + Time to deliver to processor
Miss penalty is usually MUCH larger than the hit time

230

Cache Access Time

Average access time
Access time = (hit time) + (miss penalty)x(miss rate)

Want high hit rate & low hit time, since miss penalty is large

Average Memory Access Time (AMAT)
Apply average access time to entire hierarchy.

231

Cache Access Time Example

Note: Numbers are local hit rates – the ratio of access that go to that cache that
hit (remember, higher levels filter accesses to lower levels)

99%50 cyclesMain Memory

100%

90%

95%
Hit Rate Access Time

50,000 cyclesDisk

10 cyclesL2

1 cycleL1
Hit TimeLevel

232

Handling A Cache Miss

Processor expects a cache hit (1 cycle), so no effect on hit.
Instruction Miss

1. Send the original PC to the memory
2. Instruct memory to perform a read and wait (no write enables)
3. Write the result to the appropriate cache line
4. Restart the instruction

Data Miss
1. Stall the pipeline (freeze following instructions)
2. Instruct memory to perform a read and wait
3. Return the result from memory and allow the pipeline to continue

233

Exploiting Locality

Spatial locality
Move blocks consisting of multiple contiguous words to upper level

Temporal locality
Keep more recently accessed items closer to the processor
When we must evict items to make room for new ones, attempt to keep

more recently accessed items

234

Cache Arrangement

How should the data in the cache be organized?
Caches are smaller than the full memory, so multiple addresses must map
to the same cache “line”

Direct Mapped – Memory addresses map to particular location in that cache

Fully Associative – Data can be placed anywhere in the cache

N-way Set Associative – Data can be placed in a limited number of places in
the cache depending upon the memory address

235

Direct Mapped Cache

4 byte direct mapped cache with 1 byte blocks
Optimize for spatial locality (close blocks likely to be accessed soon)

0
1
2
3
4
5
6
7
8
9
A
B
C

E
D

F

0
1
2
3

Memory Address

Cache
Address

236

Finding A Block

Each location in the cache can contain a number of different memory locations
Cache 0 could hold 0, 4, 8, 12, …

We add a tag to each cache entry to identify which address it currently contains
What must we store?

237

Cache Tag & Index

Assume 2n byte direct mapped cache with 1 byte blocks

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Cache Tag = 57 Cache Index=03

0
1
2
3
4
5
6
7

2n-1

… … … …
Valid Bit Tag Data

238

Cache Access Example

Assume 4 byte cache
Access pattern:
00001
00110
00001
11010
00110

0
1
2
3

Valid Bit Tag Data

239

Cache Access Example (cont.)

Assume 4 byte cache
Access pattern:
00001
00110
00001
11010
00110

0
1
2
3

Valid Bit Tag Data

240

Cache Access Example (cont. 2)

Assume 4 byte cache
Access pattern:
00001
00110
00001
11010
00110

0
1
2
3

Valid Bit Tag Data

241

Cache Access Example

Assume 4 byte cache
Access pattern:
00001
00110
00001
11010
00110

0
1
2
3

0
1
1
0

000
001

M[00001]
M[00110]

Valid Bit Tag Data
Compulsory/Cold Start miss

242

Cache Access Example (cont.)

Assume 4 byte cache
Access pattern:
00001
00110
00001
11010
00110

0
1
2
3

0
1
1
0

000
110

M[00001]
M[11010]

Valid Bit Tag Data
Compulsory/Cold

Start miss

243

Cache Access Example (cont. 2)

Assume 4 byte cache
Access pattern:
00001
00110
00001
11010
00110

0
1
2
3

0
1
1
0

000
001

M[00001]
M[00110]

Valid Bit Tag Data

Conflict Miss

244

Cache Size Example

How many total bits are requires for a direct-mapped cache with 64 KB of data
and 1-byte blocks, assuming a 32-bit address?

Index bits:

Bits/block:
Data:
Valid:
Tag:

Total size:

245

Cache Block Overhead

Previous discussion assumed direct mapped cache 1 byte blocks
Uses temporal locality by holding on to previously used values
Does not take advantage of spatial locality
Significant area overhead for tag memory

Take advantage of spatial locality & amortize tag memory via larger block size

0
1
2
3
4
5
6
7

2n-1

… … … …

Valid Bit Tag Data
… … …

246

Cache Blocks

Assume 2n byte direct mapped cache with 2m byte blocks

0
1
2
3
4
5
6
7

2n-1

… … … …

Valid Bit Tag Data

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Cache Tag = 58 Byte Select = 1Cache Index = 4
……

…

0 1 2m-1

247

Cache Block Example

Given a cache with 64 blocks and a block size of 16 bytes, what block number
does byte address 120010 map to?

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Cache Tag Byte SelectCache Index

Remove Byte select: ⎣1200/16⎦ = 75
Remove cache tag: 75 mod 64 = 11

011101

248

Block Size Tradeoff

In general, larger block size take advantage of spatial locality BUT:
Larger block size means larger miss penalty:

Takes longer time to fill up the block
If block size is too big relative to cache size, miss rate will go up

Too few cache blocks

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Average
Access

Time

Increased Miss Penalty
& Miss Rate

Block Size Block Size

249

Direct Mapped Cache Problems

What if regularly used items happen to map to the same cache line?
Ex. &(sum) = 0, &(I) = 64, cache is 64 bytes

Thrashing – Continually loading into cache but evicting it before reuse

int sum = 0;

…
for (int I=0; I!=N; I++) {

sum += I;
}

0
1
2
3
4
5
6
7

63
… … … …

Valid Bit Tag Data

250

Cache Miss Types

Several different types of misses (categorized based on problem/solution)
3 C’s of cache design

Compulsory/Coldstart
First access to a block – basically unavoidable (though bigger blocks help)
For long-running programs this is a small fraction of misses

Capacity
The block needed was in the cache, but unloaded because too many other accesses

intervened.
Solution is to increase cache size (but bigger is slower, more expensive)

Conflict
The block needed was in the cache, and there was enough room to hold it and all

intervening accesses, but blocks mapped to the same location knocked it out.
Solutions

Cache size
Associativity

Invalidation
I/O or other processes invalidate the cache entry

251

Fully Associative Cache

No cache index – blocks can be in any cache line

0
1
2
3
4
5
6
7

2n-1

… …… …

Valid BitTag Data

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Cache Tag = 57 Byte Select=01

……

…

0 1 2m-1
= =?

= =?
= =?

= =?
= =?

= =?
= =?

= =?

= =?

252

Fully Associative vs. Direct Mapped

No conflict misses
Only capacity and compulsory/cold start

Significant hardware overhead
Must quickly search all tags in parallel

Must wait for hit/miss detection before using data
Direct mapped can assume data is present & compute in parallel to hit test

253

N-way Set Associative

N lines are assigned to each cache index
~ N direct mapped caches working in parallel

Direct mapped = 1-way set associative
Fully Associative = 2N-way set associative (where 2N is # of cache lines)

254

2-Way Set Associative Cache

Cache index selects a “set”, two tags compared in parallel

= =?

…

Valid

…

Tag Block

…

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Cache Tag = 57 Byte Select=01Cache Index = 04
…

Valid

…

TagBlock

…

= =?Addr Cache Tag Addr Cache Tag

Hit

Cache Block

255

N-way vs. Other Caches

Fewer conflict misses than direct-mapped
Fully associative has 0

Fewer comparators than fully associative
Fully associative: C comparators (for cache with C lines)
N-way associative: N comparators (N << C)
Direct mapped: 1 comparator

Slower than direct mapped
Extra mux delay on output
Must wait until comparator is done to use data

(direct mapped can assume hit)

256

Cache Miss Comparison

Fill in the blanks: Zero, Low, Medium, High, Same for all

ZeroMediumHighConflict Miss

HighMediumLowCapacity Miss

Same

Same

Medium
N-Way Set Associative

Same

Same

Small
(lots of comparators)

Fully Associative

SameInvalidation Miss

SameCompulsory Miss:

Big
(Few comparators)

Cache Size:
Small, Medium, Big?

Direct Mapped

257

Complex Cache Miss Example

8-word cache, 2-word blocks. Determine types of misses (CAP, COLD, CONF).

0
2
3
1
7
3
1
0
0
Block Addr

676Total:

CapHitHit0

ColdColdCold16

HitConf (w/8)Hit24

HitConf (w/56)Conf (w/56)8

ColdColdCold56

ColdColdCold24

ColdColdCold8

Hit (in 0’s block)Hit (in 0’s block)Hit (in 0’s block)4

ColdColdCold0
Fully Assoc2-Way AssocDirect MappedByte Addr

258

Writing & Caches

Direct-mapped cache with 2-word blocks, initially empty

Main Memory:

Cache Line:

Sw $t0, 0($0)

Write-back Write-through Write-Around

Fetch-on-Write
Write Buffer

Write Buffer

259

Writing & Caches (cont.)

Write-back
Just save in cache
Need to remember to write to memory when evicting from cache

Dirty bit

Write-through
Write to both cache and main memory

Slow! Perhaps buffer write
No worries while evicting from a cache

Write-around
Just write to main memory

Slow! Perhaps buffer write

Fetch-on-write (for write-through, write-back)
Fill empty parts of cache block from main memory
Alternative: per-entry valid bits

260

Replacement Methods

If we need to load a new cache line, where does it go?

Direct-mapped

Only one possible location

Set Associative

N locations possible, optimize for temporal locality?

Fully Associative

All locations possible, optimize for temporal locality?

261

Replacement Strategies

When needed, pick a location

Approach #1: Random
Just arbitrarily pick from possible locations

Approach #2: Least Recently Used (LRU)
Use temporal locality
Must track somehow – extra cache bits to indicate how recently used

In practice, Random typically only 12% worse than LRU

262

Split Caches

Instruction vs. Data accesses
How do the two compare in usage?

How many accesses/cycle do we need for our pipelined CPU?

Typically split the caches into separate instruction, data caches
Higher bandwidth
Optimize to usage
Slightly higher miss rate because each cache is smaller.

263

Multi-level Caches

Instead of just having an on-chip (L1) cache, an off-chip (L2) cache is helpful

Ex. Consider instruction fetches only:
Base machine with CPI = 1.0 if all references hit the L1, 500 MHz
Main memory access delay of 200ns. L1 miss rate of 5%
How much faster would the machine be if we added a L2 which reduces the
miss rate of L1 & L2 to 2%, but all L2 accesses (hits & misses) are 20ns,
thus slowing down main memory accesses to 220ns.

500MHz = 2ns clock period. Main memory access (no L2) = 100 cycles.
L2 access = 10 cycles. Main memory w/L2 = 110 cycles

No L2: CPI = 1.0 + .05*(100) = 6.0

With L2: CPI = 1.0 + .03*(10) + .02(110) = 3.5

Since same code & clock rate, benefit = 6.0/3.5 = 1.7 speedup

264

Cache Summary

Provide the illusion of big, fast memory via locality-optimized memory hierarchy
Small SRAM upper levels, large DRAM lower levels

Locality: Temporal, Spatial

Three major categories of cache misses
Compulsory
Conflict
Capacity

Four design decisions
Where can the block be placed?
How is a block found?
Which block should be replaced on a cache miss
What happens on a write?

265

Virtual Memory

Disk more cost effective than even DRAM
Use Disk as memory?

Virtual Memory: View disk as the lowest level in the memory hierarchy
“Page” memory to disk when information won’t fit in main memory

$0.10-$0.20(10-20)x106nsDisk

$5-$1060-120nsDRAM

$100-$2005-25nsSRAM
$/MB in 1997Access TimeTechnology

266

Virtual to Physical Addresses
Virtual Addresses Physical Addresses

Disk Addresses

Address
Translation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Virtual Page Number Page OffsetVirtual Address:

Physical Page Number Page OffsetPhysical Address:

Translation

267

Virtual Addresses

Thought experiment: What happens when you run two programs at once?
How do they share the address space?

Solution: Virtual addresses
Each address the processor generates is a Virtual Address
Virtual Addresses are mapped to Physical Addresses

Virtual address may correspond to address in memory, or to disk
Other important terminology

Page – the block for main memory, moved as a group to/from disk
Page fault – “miss” on main memory. Handled as a processor exception
Memory mapping/address translation – conversion process from virtual

to physical addresses

268

Page Table

Page Tables contain the mappings from Virtual to Physical Address
Each process has separate page table, page table register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Virtual Page Number Page OffsetVirtual Address:

Physical Page Number Page OffsetPhysical Address:

Valid
PageTableReg

Page Fault?

269

Problem: Translation requires the Page Table, which is in the Main Memory
An extra memory access

Accelerate with a Cache
Translation Lookaside Buffer (TLB)
Small, fully associative

Virtual Addresses & Performance

Translation
Processor Main

Memory
Cache

VA PA miss

hit
Instruction/data

Translation

Processor Main
Memory

Cache
VA PA miss

hit

Instruction/data

TLB
miss

hit

270

Complete Memory Hierarchy

Virtual Page Number Page OffsetVirtual Address:

Physical Page Number Page OffsetPhysical Address:

Cache Tag Byte SelectCache Index

Valid

TLB miss
exception

Tag Physical page number
=
=
=
=
=

Valid Tag Data
=Cache

hit

Data

271

Memory Hierarchy Scenarios

What is the result of the following situations in the memory hierarchy?

HitMissMiss

HitMissHit

HitHitMiss

HitHitHit

MissMissHit

Miss

Miss

Miss

Virtual
Memory

Result

MissMiss

HitMiss

HitHit

TLBCache

272

Virtual Memory Summary

