
ENGR 3410: HW#3 Solutions

October 6, 2006

3.1 Joe Optimal

Joe is a smart guy. Saving control signals is a good idea, and fun to boot! All we
need to do is take a look at the control signal table we generated in class (Fig.
1). As we can see, aside from the Don’t Care situations (X’s), the ALUSrc and
MemToReg signals are the same. Where they are not, MemToReg has an X,
or Don’t Care value. Therefore, we can use ALUSrc to drive the (originally)
MemToReg multiplexor.

Figure 1: Control signals for a single-cycle processor

1

3.2 Three Little Instructions

In this problem, we are taking the original in-class single-cycle processor and
adding three instructions, BNE, LW R, and WAI. The Branch Not Equal com-
pares two registers and if they are not equal, branches to the target instruction.
The LW R was specified a little weird in the problem. The RTL can be inter-
preted as either:

Reg[$rt] = Mem[$rs + $rt] or Reg[$rd] = Mem[$rs + $rt]

simply because we’re making up the instruction, so the output can go where we
want it ($rd or $rt). Either is acceptable since the $rd case is what we have
been using in class.

3.2.1 Branch not equal

The branch not equal case adds the control signal BNE decoded from the
instruction, as well as some circuit changes in the instruction fetch shown in
Fig. 2. The BNE condition is when the zero flag is not set and when the
BranchNotEqual control line is set. This case is taken care of via the inverter,
AND, and OR gates in the instruction fetch.

Figure 2: Modified instruction fetch supporing BNE and WAI

3.2.2 LW R

LW R is very similar to our basic load-word instruction, but instead of using an
offset in an immediate, we store it in a register. This means we need to add two

2

registers together and use the result to address memory for a read. We have all
the necessary datapath elements from the original single-cycle processor, it is
just simply a matter of control to get this to work. The controls are shown in
Fig. 4 along with the rest of the new instructions

3.2.3 WAI

WAI instructs us to load the current program counter value into register $rt.
This requires both a datapath change as well as a control change. The datapath
change includes taking the PC value from the instruction fetch (shown in Fig.
2 with an implicit pad of two zeros on the LSB side, not shown) and feeding
it into a slightly modified datapath shown in Fig. 3. The change is just a new
control signal, PCtoReg, controlling a new multiplexor that switches the input
to the register data write port.

Figure 3: Data path supporting all three new instructions

3.2.4 Control signals

The control signals for all supported instructions (up to this point) are shown
in Fig. 4.

3

Figure 4: New control signals supporting the three new instructions

3.3 Swappin’

Unfortunately, we cannot do the swap function in a single cycle of our current
processor. The shortest sequence of MIPS instructions that can implement the
swap instruction is:

xor $s0, $s0, $s1
xor $s1, $s0, $s1
xor $s0, $s0, $s1

This requires more than one write to the register file to two different register
destinations (as well as an xor instruction which we do not have). We can’t do
that.

4

