01 Introduction to Digital Logic

ENGR 3410 - Computer Architecture Mark L. Chang

Fall 2006

Acknowledgements

- Patterson \& Hennessy: Book \& Lecture Notes
- Patterson's 1997 course notes (U.C. Berkeley CS 152, 1997)
- Tom Fountain 2000 course notes (Stanford EE182)
- Michael Wahl 2000 lecture notes (U. of Siegen CS 3339)
- Ben Dugan 2001 lecture notes (UW-CSE 378)
- Professor Scott Hauck lecture notes (UW EE 471)
- Mark L. Chang lecture notes for Digital Logic (NWU BO1)

Example: Car Electronics (cont.)

- Seat Belt Light (driver belt in):

- Seat Belt Light (driver belt in, passenger belt in, passenger present):

Drim Belt
Car on
not in
pass here

pass belt Not in AND

Basic Logic Gates

- AND: If A and B are True, then Out is True

- OR: If A or B is True, or both, then Out is True

- Inverter (NOT): If A is False, then Out is True

Digital vs. Analog

Digital:
only assumes discrete values

Analog:
values vary over a broad range continuously

Advantages of Digital Circuits

- Analog systems:
slight error in input yields large error in output
- Digital systems:
more accurate and reliable readily available as self-contained, easy to cascade building blocks
- Computers use digital circuits internally
- Interface circuits (i.e., sensors \& actuators) often analog

Binary/ Boolean Logic

- Two discrete values:
yes, on, 5 volts, TRUE, "1"
no, off, 0 volts, FALSE, " 0 "
- Advantage of binary systems:
rigorous mathematical foundation based on logic

IF the garage door is open AND the car is running
THEN the car can be backed out of the garage
both the door must be open and the car running before I can back out

```
IF passenger is in the car
AND passenger belt is in
AND driver belt is in
THEN we can turn off the fasten seat belt light
```

the three preconditions must be true to imply the conclusion

Combinational vs. Sequential Logic

Sequential Iogic

Network implemented from logic gates. The presence of feedback distinguishes between sequential and combinational networks.

Combinational Iogic

No feedback among inputs and outputs. Outputs are a function of the inputs only.

Black Box (Maj ority)

- Given a design problem, first determine the function
- Consider the unknown combination circuit a "black box"

Truth Tables

Algebra: variables, values, operations
In Boolean algebra, the values are the symbols 0 and 1 If a logic statement is false, it has value 0 If a logic statement is true, it has value 1

Operations: AND, OR, NOT

X	Y	X AND Y
0	0	0
0	1	0
1	0	0
1	1	1

X	NOT X
0	1
1	0

X	Y	X OR Y
0	0	0
0	1	1
1	0	1
1	1	1

Boolean Equations

Bool ean Algebra

 values: 0, 1variables: A, B, C, . . ., X, Y, Z operations: NOT, AND, OR, . . .

NOT X is written as \bar{X}
X AND Y is written as $X \& Y$, or sometimes $X Y$ X OR Y is written as $X+Y$

Deriving Boolean equations from truth tables:

A	B	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$
\text { Sum }=\bar{A} B+A B
$$

OR'd together product terms for each truth table row where the function is 1
if input variable is 0 , it appears in complemented form;
if 1 , it appears uncomplemented

Boolean Algebra

Another example:

Boolean Algebra

Reducing the complexity of Boolean equations
Laws of Boolean algebra can be applied to full adder's carry out function to derive the following simplified expressionं

Verify equivalence with the original Carry Out truth table:
place a 1 in each truth table row where the product term is true each product term in the above equation covers exactly two rows in the truth table; several rows are "covered" by more than one term

Representations of Boolean Functions

- Boolean Function: $F=\bar{X}+Y Z$

$$
F=\bar{x}+y z
$$

Truth Table:
Circuit Diagram:

Why Boolean Algebra/ Logic Minimization?

Logic Minimization: reduce complexity of the gate level implementation

- reduce number of literals (gate inputs)
- reduce number of gates
- reduce number of levels of gates
fewer inputs implies faster gates in some technologies
fan-ins (number of gate inputs) are limited in some technologies
fewer levels of gates implies reduced signal propagation delays
number of gates (or gate packages) influences manufacturing costs
- $X+0=X$
$X^{*} 1=\chi$
- $x+1=1$
$x * 0=\circlearrowright$
- $x+X=X$
$X^{*} X=\chi$
- $x+\bar{X}=1$
$x * \bar{x}=0$
- $\overline{\bar{X}}=$

Basic Laws

- Commutative Law:

$$
X+Y=Y+X \quad X Y=Y X
$$

- Associative Law:

$$
X+(Y+Z)=(X+Y)+Z \quad X(Y Z)=(X Y) Z
$$

- Distributive Law:

$$
X(Y+Z)=X Y+X Z \quad X+Y Z=(X+Y)(X+Z)
$$

Boolean Manipulations

- Boolean Function: $F=X Y Z+\bar{X} Y+X Y \bar{Z}$

Reduce Function:

$$
\begin{aligned}
F & =x y z+x y \bar{z}+\bar{x} y \\
& =x y(2+\bar{z})+\bar{x} y \\
& =x y+\bar{x} y \\
& =y(x+\bar{x}) \\
& =y
\end{aligned}
$$

Advanced Laws

- $\mathrm{X}+\mathrm{XY}=\mathrm{X}$
- $X Y+X \bar{Y}=X$
- $X+\bar{X} Y=x+y$
- $\mathrm{X}(\mathrm{X}+\mathrm{Y})=x x+x y=x+x y=x$
- $(\mathrm{X}+\mathrm{Y})(\mathrm{X}+\overline{\mathrm{Y}})=x(x+\bar{y})+y(x+\overline{5})=\nless x+x^{x} \bar{y}+x y+y \bar{y}^{0}$
- $\mathrm{X}(\overline{\mathrm{X}}+\mathrm{Y})=$
- $\mathrm{X}(\overline{\mathrm{X}}+\mathrm{Y})=$

$$
=\begin{gathered}
x(y+y) \\
x+x+0=x
\end{gathered}
$$

$$
\begin{aligned}
x \bar{x}+x y & =0+x y \\
& =x y
\end{aligned}
$$

Boolean Manipulations (cont.)

- Boolean Function: $F=X Y Z+X Z$

Truth Table:
$\left(\begin{array}{ccc|c}\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{F} \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \rightarrow 0 & 1 & 1 & 1 \\ \hline 1 & 0 & 0 & 0 \\ \rightarrow 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ \rightarrow 1 & 1 & 1 & 1 \\ \\ & & & \end{array}\right.$

Reduce Function:

$$
F=\bar{x} y z+x z
$$

$$
=2(\bar{x} y+x)
$$

$$
=z(x+y)=x z+y z
$$

Boolean Manipulations (cont.)

- Boolean Function: $\mathrm{F}=(\mathrm{X} \overline{\mathrm{Y}}+\mathrm{X} \overline{\mathrm{Y}})(\mathrm{XY}+\overline{\mathrm{X}} \mathrm{Z}+\mathrm{Y} Z)$

$$
\bar{y}(1+x)+x=x+y
$$

Truth Table:

X	Y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	l
1	1	1	I

Reduce Function:

$$
\begin{aligned}
F & =(x+\bar{y})(x y+\bar{x} z+y z) \\
& =x x y+x \bar{x} z+x y z+x y \bar{y}+\bar{x} \bar{y} z+y \bar{y} z \\
& =x y+x y z+\bar{x} \bar{y} z \\
& =x y(1+z)+\bar{x} \bar{y} z \\
& =x y+\bar{x} \bar{y} z \\
& \overline{x y} \neq \bar{x} \bar{y}
\end{aligned}
$$

DeMorgan's Law

$$
\begin{aligned}
& \overline{(X+Y)}=\bar{X} * \bar{Y} \\
& N G R \\
& \overline{(X * Y)}=\bar{X}+\bar{Y} \\
& \text { NAND }
\end{aligned}
$$

X	Y	\bar{X}	\bar{Y}	$\overline{X+Y}$	$\bar{X} \cdot \bar{Y}$
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

X	Y	\bar{X}	\bar{Y}	$\bar{X} \cdot Y$	$\bar{X}+\bar{Y}$
0	0	1	1		
0	1	1	0		
1	0	0	1		
1	1	0	0		

DeMorgan's Law can be used to convert ANDIOR expressions to ORIAND expressions

Example:

$$
\begin{aligned}
& Z=\bar{A} \bar{B} C+\bar{A} B C+A \bar{B} C+A B \bar{C} \\
& \bar{Z}=(A+B+\bar{C})^{*}(A+\bar{B}+\bar{C}) *(\bar{A}+B+\bar{C})^{*}(\bar{A}+\bar{B}+C)
\end{aligned}
$$

DeMorgan's Law example

- If $\mathrm{F}=(\mathrm{XY}+\mathrm{Z})(\overline{\mathrm{Y}}+\overline{\mathrm{X}} \mathrm{Z})(\mathrm{X} \overline{\mathrm{Y}}+\overline{\mathrm{Z}})$,

$$
\begin{aligned}
\bar{F} & =\overline{(x y+z)(\bar{y}+\bar{x} z)(x \bar{y}+\varepsilon)} \\
& =\overline{(x y+z)}+\overline{(\bar{y}+\bar{x} z})+\overline{(x \bar{y}+\bar{z})} \\
& =(\overline{x y})(\bar{z})+(y)(\bar{x} z)+(\overline{x \bar{y}})(z) \\
& =(\bar{x}+\bar{y})(\bar{z})+y(x+\bar{z})+(\bar{x}+y) z
\end{aligned}
$$

NAND and NOR Gates

- NAND Gate: NOT(AND(A, B))

X	Y	X NAND Y
0	0	1
0	1	1
1	0	1
1	1	0

- NOR Gate: $\operatorname{NOT(OR(A,B))}$

X	Y	X NOR Y
0	0	1
0	1	0
1	0	0
1	1	0

XOR and XNOR Gates

- XOR Gate: $Z=1$ if X is different from Y

| X | | |
| :---: | :---: | :---: | :---: |
| $\mathrm{Y} \square \square-\mathrm{Z}$ | X | Z |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

- XNOR Gate: $Z=1$ if X is the same as Y

X	Y	Z
0	0	1
0	1	0
1	0	0
1	1	1

Boolean Equations to Circuit Diagrams

■ $\mathrm{F}=\mathrm{XYZ}+\overline{\mathrm{X}} \mathrm{Y}+\mathrm{XY} \overline{\mathrm{Z}}$

■ $\mathrm{F}=\mathrm{XY}+\mathrm{X}(\mathrm{WZ}+\mathrm{W} \overline{\mathrm{Z}})$

