
ENGR 3410: MP #2

MIPS 32-bit ALU

Assigned: October 12, 2007
Due: October 23, 2007

1 The Problem

The purpose of this machine problem is to create the arithmetic-logic unit of
your MIPS-style microprocessor. You will be designing and implementing a
simple 32-bit MIPS ALU. The ALU functions to implement are ADD, SUB,
XOR, and SLT. Examples of this type of architecture are shown in our textbook.
The overall block diagram of our design will look a little like the figure below
(Fig. 1).

2 Implementation

The ALU has 7 ports. These ports are the two input ports A and B, the output
port, ALU control, zero detect output, overflow detect output, and the carryout
output. The ALU control line assignments are given below. Please use these
inputs to select the ALU function.

ALU CONTROL LINES FUNCTION
00 ADD
01 SUB
10 XOR
11 SLT

My estimate for completion of this machine problem is approximately 20-30
person-hours. This machine problem is in some ways harder, and some ways
easier than the last.

One way to easily break it up is to develop the ADD/SUB first, the XOR/SLT
next, and put it all together in the last several days.

3 Lab requirements

• Use the file “alustim.v” as your test bench. You can find this file on the
wiki. You should alter the testing as necessary to make sure your unit

1



Figure 1: A block diagram of the ALU.

works. I have my own test bench for use during the demos, so you must
make sure your ALU takes the same inputs and outputs, in the same order,
as is presented in the provided test bench. Write a bunch of tests!

• All logic must be gate level, structural. That is, built from explicit AND,
OR, NAND, NOR, XOR, etc. gates. No assign statements (except an
assign to set a wire to a constant value), CASE statements, etc.

• You may use behavioral Verilog for your test benches.

• All gates have a delay of 50 units. Processor performance won’t be a
grading criteria for the class (unless you do really ridiculous things), but
you need delay to show how things behave.

2



4 Deliverables

We have three deliverables. A coding check in, a write-up with code, and a
demo.

4.1 Check-in

In order to keep you on track, your team will be working on this lab in class on
October 18th, and must demonstrate what you have done, in person, on October
25th, in class. It will be a quick assessment, and you will be graded based upon
your overall progress toward the final deliverable.

4.2 Write-Up

I expect a semi-formal “lab write-up” of this machine problem. It does not need
to be as rigorous as lab notebooks in other, more experimental classes. It should
include, at a minimum:

• A brief write-up of the experiments

• Files of all Verilog code — modules and test benches

• Simulation output (textual or waveform) for each circuit

• A full schematic at the gate level. It will likely be multi-level (i.e. boxes
on an upper level have a lower-level sheet with the details). Do not use the
Cadence tool to generate your schematic. Photocopies or scans of your
pictures are acceptable. You do not need to make completely detailed
diagrams of your register file.

We would prefer this packaged as a single document (Word, LATEX, PDF)
and supporting Verilog code, in a single, well-named archive file (ZIP or TAR).
Please name this file after your team. So if you are Team Smack, your directory
would be “teamsmack”, and you would ZIP that up into a file “teamsmack.zip”.

Other notes:

• You may turn in one deliverable for all group members

• Please email your documents to myself and John Morgan

• We expect all group members to participate in every aspect of this machine
problem

• Please check out the tutorials on the class wiki. They are actually useful,
I promise.

3



4.3 Demos

DEMOS ARE REQUIRED, WHETHER YOUR CODE WORKS OR
NOT

We will be putting together demo dates that start after the due date of
this machine problem. We will be using the wiki to coordinate times. Your
deliverables are still due on the date at the top of this assignment, in class.

The Demo is when your team convinces us that your implementation does
what it was supposed to do. This is accomplished using a combination of your
test benches and our custom test benches. It is also a time for us to gauge the
level of involvement of each of the group members.

If you do not demo your assignment, your team will automatically get a zero.
Missing your demo slot without prior approval will impose a late penalty on the
entire assignment. All team members should be present for the demonstration
unless a prior arrangement has been made.

5 Hints and Tips

Some of these are repeated from the last machine problem because they are so
important.

• Test EACH MODULE you make. There is literally 0% chance that you
will write all these pieces without testing them, then slap them together
into an ALU and it will just work. Add to the fact that this is now a
conglomeration of hundreds if not thousands of gates, it is hard to debug
when it inevitably does not work.

• As with the last machine problem, the provided test bench is really just
a skeleton for something you should be writing to test each module you
make. The testing here is far from exhaustive, and far from acceptable.
Heck, it doesn’t even try and test the XOR or SLT instructions. This is
deliberate. I give you enough examples to see how to construct the tests,
while having you figure out the test cases yourself.

• Consider using code generators. For repetitive Verilog statements that
vary by only a few digits, it is trivial to make a loop in Python to generate
lots of Verilog programmatically. This is a fantastic short-cut.

• Check for typos. Verilog won’t really tell you when you’ve used a signal
that doesn’t exist.

• Use the concatenation operation. Check the verilog tutorial.

4


