1001
Pipelining

ENGR 3410 - Computer Architecture
Mark L. Chang
Fall 2008

Pipelining

Example: Doing the laundry

Ann, Brian, Cathy, & Dave @@@

each have one load of clothes to wash, dry, and fold

Washer takes 30 minutes

o

(-

Dryer takes 40 minutes

“Folder” takes 20 minutes qF

190

ﬁequential Laundry \
9 10 11 Midnight

6PM 7 8
|

| Time

R e B B e D B s i R e

I30 :}0 20 30 40 20 30 40 20 30 40 20
. | B (Sl
S | = <
g Par
| | © = al
B NG,

e Sequential laundry takes 6 hours for 4 loads
o If they learned pipelining, how long would laundry take?

191

ﬁipelined Laundry: Start work ASAP \

6PM 7 8 9 10 11 Midnight
I .
| Time]
e e
30 40 40 40 40 20
T =7 " °
a @ (- 7
S | =))
k g —
) =l
B (el
e = ()
& S04

 Pipelined laundry takes 3.5 hours for 4 loads

192

Pipelining Lessons

 Pipelining doesn’t help latency
6 PM 7 8 9 of single task, it helps

I . > throughput of entire workload
Time o o
| | | | | Pipeline rate limited by slowest

pipeline stage

:.30 .ﬂlo ‘40 40 40 20 « Multiple tasks operating
T 526 = simultaneously using different
i — 7 resources
K =/ ° « Potential speedup = Number

O (&= 7‘ pipe stages
o) = e Unbalanced lengths of pipe
(]

r @ ﬁ stages reduces speedup
d P . Time to “fill” pipeline and time
e = o to “drain” it reduces speedup
rl 65 O)£ - Stall for Dependences

\ 193

Pipelined Execution

Time ‘
IFetch| Dcd Exec |Mem | WB
IFetch| Dcd Exec |Mem WB
IFetch| Dcd Exec |Mem | WB
IFetch| Dcd Exec |Mem | WB
Program Flow IFetch[Dcd |Exec |Mem | WB

« Now we just have to make it work

194

Single Cycle, Multiple Cycle, vs. Pipeline

‘ Cycle 1 > i« Cycle 2

Clk |

Singfle Cycle Implementation:

Load I Store | Waste

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 ECyclé 10

Clk !

Multiple Cycle Implementation: : :
! Load : Store : R-type

_ Ifetchl Reg I Exec I Mem I Wr I Ifetchl Reg I Exec I Mem I Ifetch

Pipel;ine Implementation:

Load Ifetchl Reg I Exec I Mem I Wr
Store Ifetchl Reg I Exec I Mem I Wr
R-type Ifetchl Reg I Exec I Mem I Wr

195

Why Pipeline?

» Suppose we execute 100 instructions

 Single Cycle Machine
- 45 ns/cycle x 1 CPI x 100 inst = ns

e Multicycle Machine
- 10 ns/cycle x 4.0 CPI x 100 inst = ns

« ldeal pipelined machine
- 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = ns

196

CPI for Pipelined Processors

Ideal pipelined machine
- 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = ns

CPl in pipelined processor is “issue rate”. Ignore fill/drain, ignore
latency.

Example: A processor wastes 2 cycles after every branch, and 1 after
every load, during which it cannot issue a new instruction. If a program
has 10% branches and 30% loads, what is the CPI on this program?

197

Pipelined Datapath

« Divide datapath into multiple pipeline stages

IF RF EX MEM WB
Instruction Register Execute Data Writeback
Fetch — Fetch _ — Memory _
pJ . Instr. || - Register (700)Eﬁc ‘ A~ Register
Memory | —7 File 2 /“’é . Data G File
gl — 1R g > (g -
| Memory

198

Pipelined Control

« The Main Control generates the control signals during Reg/Dec

o—---

- Control signals for Exec (ALUOp, ALUSrcA, ...) are used 1 cycle later
- Control signals for Mem (MemWE, lorD, ...) are used 2 cycles later
- Control signals for Wr (Mem2Reg, RegWE, ...) are used 3 cycles later

19)S130Y (1/A1

I I I
Reg/Dec i Exec i Mem q:i Wr
ot ot ot
ALUSrcA ‘—& ALUSrcA i 5—
ALUSrcB ALUSrcB =
fawuoy Jslaluo | |g 'E
Main RegDst S RegDst o =
,| Control > =S g
MemWE & MemWE [Z| MemWE =
TorD (2| 10D Zl D &
17 1E] Sy
Mem2Reg Mem2Reg Mem2Reg = | Mem2Reg
RegWE RegWE RegWE RegWE

199

Can pipelining get us into trouble?

« Yes: Pipeline Hazards

- structural hazards: attempt to use the same resource two different
ways at the same time

e E.g., combined washer/dryer would be a structural hazard or
folder busy doing something else (watching TV)

- data hazards: attempt to use item before it is ready

« E.g., one sock of pair in dryer and one in washer; can’t fold until
get sock from washer through dryer

« instruction depends on result of prior instruction still in the
pipeline
- control hazards: attempt to make decision before condition evaluated

» E.g., washing football uniforms and need to get proper detergent
level; need to see after dryer before next load in

e branch instructions
« Can always resolve hazards by
- pipeline control must detect the hazard
- take action (or delay action) to resolve hazards

200

Pipelining the Load Instruction

The five independent functional units in the pipeline datapath are:
- Instruction Memory for the stage
- Register File’s Read ports (bus A and busB) for the
- ALU for the stage
- Data Memory for the stage
- Register File’s Write port (bus W) for the stage

{ Cycle1i Cycle2 | Cycle3{ Cycle4 | Cycle5 i Cycle 6 | Cycle7 |

Clock

Ist Iw

stage

Ifetch IReg/DecI Exec I Mem I Wr

2nd Iw| Ifetch IReg/DecI Exec I Meml Wr

3rd lw | _Ifetch IReg/DecI Exec I Meml Wr

201

The Four Stages of R-type

Ifetch: Fetch the instruction from the Instruction Memory
Reg/Dec: Register Fetch and Instruction Decode

Exec: ALU operates on the two register operands

Wr: Write the ALU output back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4

R-type

Ifetch IReg/DecI Exec I Wr

202

Structural Hazard

e Interaction between R-type and loads causes structural hazard on

writeback

: Cycle1iCycle2 | Cycle3{Cycle4 | Cycle5 | Cycle 6 {Cycle7 i Cycle8 | Cycle :

Clock

R-type| Ifetch IReg/DecI Exec I Wr

R-type

Ifetch IReg/DecI Exec I Wr

Load

Ifetch IReg/DecI Exec I Mem I Wr

R-type

Ifetch IReg/DecI Exec I Wr

R-type

Ifetch IReg/DecI Exec I Wr

B

203

Important Observation

« Each functional unit can only be used per instruction
e Each functional unit must be used at the stage for all instructions:
- Load uses Register File’s Write Port during its stage

1 2 3 4 5
Load | Ifetch IReg/DecI Exec I Meml Wr

- R-type uses Register File’s Write Port during its 4th stage

1 2 3 4
R-type| Ifetch IReg/DecI Exec I Wr

» Solution: Delay R-type’s register write by one cycle:
- Now R-type instructions also use Reg File’s write port at Stage 5
- Mem stage is a NOOP stage: nothing is being done.

1 2 3 4 S
R-type| _Ifetch IReg/DecI Exec || Mem || Wr

204

Pipelining the R-type Instruction

Cycle 1 Cycle 2 Cycle 3 Cycle 4 ECycle 5 ECycle 6 ECycle 7 ECycle 8 ECycle 9

Clock

R-type

Ifetch IReg/DecI Exec I Mem I Wr

R-type | _Ifetch IReg/DecI Exec I Mem I Wr

Load | Ifetch IReg/DecI Exec I Meml Wr

R-type| Ifetch IReg/DecI Exec I Mem I Wr

B

R-type| Ifetch IReg/DecI Exec I Mem I Wr

205

The Four Stages of Store

Ifetch: Fetch the instruction from the Instruction Memory

Reg/Dec: Register Fetch and Instruction Decode

Exec: Calculate the memory address
Mem: Write the data into the Data Memory

Wr: NOOP

Compatible with Load & R-type instructions

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Store

Ifetch IReg/DecI Exec I Mem I Wr

206

The Stages of Branch

Ifetch: Fetch the instruction from the Instruction Memory
Reg/Dec: Register Fetch and Instruction Decode, compute branch target
Exec: Test condition & update the PC

Mem: NOOP
Wr: NOOP

Beq

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch IReg/DecI Exec I Mem I Wr

207

Control Hazard

e Branch updates the PC at the end of the Exec stage.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 ECycle 5 ECycle 6 ECycle 7 ECycle 8 ECycle 9

Clock

R-type

Ifetch IReg/DecI Exec I Mem I Wr

beq Ifetch IReg/DecI Exec I Mem I Wr

load | Ifetch IReg/DecI Exec I Meml Wr

R-type| Ifetch IReg/DecI Exec I Mem I Wr

B

R-type| Ifetch IReg/DecI Exec I Mem I Wr

208

Accelerate Branches

« When can we compute branch target address?

« When can we compute beq condition?

IF

Instruction
Fetch

Jd

Instr.
Memory

\4

JIISISRY

RF
Register
Fetch

\ 4

\ 4

Register
File

EX

Execute

IPISISY

MEM
Data
Memory

WB

Writeback

\ 4

5
g

J9ISISPY

\ 4

Data
Memory

JI]ST

Register
File

209

Control Hazard 2

« Branch updates the PC at the end of the Reg/Dec stage.

Cycle 1 Cycle 2

Clock

Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

R-type

Ifetch IReg/DecI Exec I Mem I Wr

beq

Ifetch IReg/DecI Exec I Mem I Wr

load | Ifetch IReg/DecI Exec I Meml Wr

R-type| Ifetch IReg/DecI Exec I Mem I Wr

B

R-type| Ifetch IReg/DecI Exec I Mem I Wr

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Beq

Ifetch IReg/DecI Exec I Mem I Wr

210

Solution #1: Stall

oY

"lock

R-type

Delay loading next instruction, load no-op instead

Cycle 1 Cycle 2

Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

]

Ifetch IReg/DecI Exec || Mem || Wr

beq Ifetch

IReg/Decll Exec || Mem || Wr
o

o
Bubb Bubb Bubb Bubb
° le le le le .

Ifetch IReg/DecI Exec I Mem I Wr

R-type| Ifetch IReg/DecI Exec I Mem I Wr

R-type|_Ifetch IReg/DecI Exec I Mem I Wr

CPI1 if all other instructions take 1 cycle, and branches are 20% of

instructions?

211

Solution #2: Branch Prediction

e Guess all branches not taken, squash if wrong

Clock

R-type

« CPIif 50% of branches actually not taken, and branch frequency 20%?

Cycle 1 Cycle 2 Cycle 3 Cycle 4 ECycle 5 ECycle 6 ECycle 7 ECycle 8 ECycle 9

Ifetch IReg/DecI Exec I Mem I Wr

beq Ifetch IReg/DecI Exec I Mem I Wr

load | Ifetch IReg/DecI Exec I Meml Wr

R-type| Ifetch IReg/DecI Exec I Mem I Wr

B

R-type| Ifetch IReg/DecI Exec I Mem I Wr

212

Solution #3: Branch Delay Slot

» Redefine branches: Instruction directly after branch always executed

Instruction after branch is the delay slot

Compiler/assembler fills the delay slot

add $tl, $t0, S$toO sub $t2, $t0, $t3 add $t1,
beq $t2, $t3, FOO add $tl, $t0, $t0 beq $t1,
beg $tl1, $t3, FOO
add S$t1,
FOO:
add St1,

$t0,
$t3,

$t3,

st2,

$t0
FOO

$t3

$t0

add $tl1, $t0, $tO
beg $t1l, $t3, FOO

213

Data Hazards

e Consider the following code:
add 5t0, St1, St2

sub St3, St0, St4

and S$t5, St0, St7

or S$t8, 5t0, SsO

xor S$s1, 5t0, Ss2

Clock

add

Cycle 1 Cycle2 Cycle 3 Cycle 4 Cycle S Cycle 6 Cycle 7 Cycle 8 Cycle 9

B

Ifetch IReg/DecI Exec I Mem I Wr

sub

Ifetch IReg/DecI Exec I Mem I Wr

and | Ifetch IReg/DecI Exec I Mem I Wr

or Ifetch IReg/DecI Exec I Mem I Wr

xor Ifetch IReg/DecI Exec I Mem I Wr

214

Design Register File Carefully

. : - ?
What if reads see value after write during the same cycle? add $10, $t1, $t2

sub $t3, 510, $t4
and $t5, $10, $t7
or $t8, $10, $s0

xor $s1, $t0, $s2

; Cycle1iCycle2 ;| Cycle3; Cycled ; Cycle5 i Cycle 6 i Cycle7 i Cycle8 i Cycle9 ;

Clock_ _ _ _ _I

add Ifetch IReg/DecI Exec I Mem I Wr

sub Ifetch IReg/DecI Exec I Mem I Wr

and | Ifetch IReg/DecI Exec I Mem I Wr

or Ifetch IReg/DecI Exec I Mem I Wr

xor Ifetch IReg/DecI Exec I Mem I Wr

215

Forwarding

e Add logic to pass last two values from ALU output to ALU input(s) as

needed

- Forward the ALU output to later instructions

Cycle 1 Cycle 2

add $10, $t1, $t2
sub $t3, $t0, $t4
and $t5, $t0, $t7
or $t8, $10, $s0

xor $s1, $t0, $s2

Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Clock

B

add Ifetch IReg/DecI Exec I Mem I Wr

sub

Ifetch IReg/DecI Exec I Mem I Wr

and

Ifetch IReg/DecI Exec I Mem I Wr

or

Ifetch IReg/DecI Exec I Mem I Wr

Xor

Ifetch IReg/DecI Exec I Mem I Wr

216

Forwarding (cont.)

Jd

Requires values from last two ALU operations.

Remember destination register for operation.
Compare sources of current instruction to destinations of previous 2.

\ 4

EX
Execute

IF RF
Instruction Register
Fetch _ Fetch
Instr. = - Register
Memory Ué *>1 File

\ 4

JIISISY

A\ 4

5
g

MEM WB

Data Writeback
Memory —

| =1 Register
2 Data 4| File
) Memory D

217

Data Hazards on Loads

load 5t0, 0(St1)
sub S$t3, St0, St4
and S$t5, St0, St7
or S$t8, 5t0, SsO
xor $s1, St0, Ss2

Cycle 1 Cycle 2

Clock

Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

load Ifetch IReg/DecI Exec I Mem I Wr

sub Ifetch IReg/DecI Exec I Mem I Wr

and

Ifetch IReg/DecI Exec I Mem I Wr

or

Ifetch IReg/DecI Exec I Mem I Wr

Xor

B

Ifetch IReg/DecI Exec I Mem I Wr

218

Data Hazards on Loads

Solution:

Use same forwarding hardware & register file for hazards 2+ cycles
later

Force compiler to not allow register reads within a cycle of load
« Fill delay slot, or insert no-op.

219

Pipelined CPI, cycle time

CPI, assuming compiler can fill 50% of delay slots

Instruction Type Type Cycles Type Frequency Cycles * Freq
ALU 50%
Load 20%
Store 10%
Branch 20%

CPI:

Pipelined: cycle time = 1ns.

Multicycle: CPI = 4.0, cycle time = 1ns.
Single cycle: CPI = 1.0, cycle time = 4.5ns.

Delay for 1M instr:
Delay for 1M instr:

Delay for 1M instr:

220

Pipelined CPU Summary

-

~

221

