
1001
Pipelining

ENGR 3410 – Computer Architecture
Mark L. Chang

Fall 2008

190

Pipelining

Example: Doing the laundry

Ann, Brian, Cathy, & Dave
 each have one load of clothes to wash, dry, and fold

Washer takes 30 minutes

Dryer takes 40 minutes

“Folder” takes 20 minutes

A B C D

191

Sequential Laundry

•  Sequential laundry takes 6 hours for 4 loads
•  If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

192

Pipelined Laundry: Start work ASAP

•  Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

193

Pipelining Lessons

•  Pipelining doesn’t help latency
of single task, it helps
throughput of entire workload

•  Pipeline rate limited by slowest
pipeline stage

•  Multiple tasks operating
simultaneously using different
resources

•  Potential speedup = Number
pipe stages

•  Unbalanced lengths of pipe
stages reduces speedup

•  Time to “fill” pipeline and time
to “drain” it reduces speedup

•  Stall for Dependences

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

194

Pipelined Execution

•  Now we just have to make it work

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB
Program Flow

Time

195

Single Cycle, Multiple Cycle, vs. Pipeline

Clk

Cycle 1

Multiple Cycle Implementation:

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec Mem
Load Store

Pipeline Implementation:

Ifetch Reg Exec Mem Wr Store

Clk

Single Cycle Implementation:

Load Store Waste

Ifetch
R-type

Ifetch Reg Exec Mem Wr R-type

Cycle 1 Cycle 2

196

Why Pipeline?

•  Suppose we execute 100 instructions

•  Single Cycle Machine
–  45 ns/cycle x 1 CPI x 100 inst = ____ ns

•  Multicycle Machine
–  10 ns/cycle x 4.0 CPI x 100 inst = ____ ns

•  Ideal pipelined machine
–  10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = ____ ns

197

CPI for Pipelined Processors
•  Ideal pipelined machine

–  10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = ____ ns

•  CPI in pipelined processor is “issue rate”. Ignore fill/drain, ignore
latency.

•  Example: A processor wastes 2 cycles after every branch, and 1 after
every load, during which it cannot issue a new instruction. If a program
has 10% branches and 30% loads, what is the CPI on this program?

198
R

egister

R
egister

R
egister

R
egister

•  Divide datapath into multiple pipeline stages

Pipelined Datapath

PC

Data
Memory

Instr.
Memory

Register
File

Register
File

IF
Instruction

Fetch

RF
Register

Fetch

EX
Execute

MEM
Data

Memory

WB
Writeback

199

Pipelined Control

•  The Main Control generates the control signals during Reg/Dec
–  Control signals for Exec (ALUOp, ALUSrcA, …) are used 1 cycle later
–  Control signals for Mem (MemWE, IorD, …) are used 2 cycles later
–  Control signals for Wr (Mem2Reg, RegWE, …) are used 3 cycles later

IF/ID
 R

egister

ID
/E

x R
egister

E
x/M

em
 R

egister

M
em

/W
r R

egister

Reg/Dec Exec Mem

ALUSrcA

ALUOp
RegDst

ALUSrcB

IorD
MemWE

Mem2Reg
RegWE

Main
Control

ALUSrcA

ALUOp
RegDst

ALUSrcB

Mem2Reg
RegWE

Mem2Reg
RegWE

Mem2Reg
RegWE

IorD
MemWE

IorD
MemWE

Wr

200

Can pipelining get us into trouble?
•  Yes: Pipeline Hazards

–  structural hazards: attempt to use the same resource two different
ways at the same time

•  E.g., combined washer/dryer would be a structural hazard or
folder busy doing something else (watching TV)

–  data hazards: attempt to use item before it is ready
•  E.g., one sock of pair in dryer and one in washer; can’t fold until

get sock from washer through dryer
•  instruction depends on result of prior instruction still in the

pipeline
–  control hazards: attempt to make decision before condition evaluated

•  E.g., washing football uniforms and need to get proper detergent
level; need to see after dryer before next load in

•  branch instructions
•  Can always resolve hazards by waiting

–  pipeline control must detect the hazard
–  take action (or delay action) to resolve hazards

201

Pipelining the Load Instruction
•  The five independent functional units in the pipeline datapath are:

–  Instruction Memory for the Ifetch stage
–  Register File’s Read ports (bus A and busB) for the Reg/Dec stage
–  ALU for the Exec stage
–  Data Memory for the Mem stage
–  Register File’s Write port (bus W) for the Wr stage

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Ifetch Reg/Dec Exec Mem Wr 1st lw

Ifetch Reg/Dec Exec Mem Wr 2nd lw

Ifetch Reg/Dec Exec Mem Wr 3rd lw

202

The Four Stages of R-type
•  Ifetch: Fetch the instruction from the Instruction Memory
•  Reg/Dec: Register Fetch and Instruction Decode
•  Exec: ALU operates on the two register operands
•  Wr: Write the ALU output back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec Wr R-type

203

Structural Hazard
•  Interaction between R-type and loads causes structural hazard on

writeback

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec Wr R-type

Ifetch Reg/Dec Exec Wr R-type

Ifetch Reg/Dec Exec Mem Wr Load

Ifetch Reg/Dec Exec Wr R-type

Ifetch Reg/Dec Exec Wr R-type

204

Important Observation

•  Each functional unit can only be used once per instruction
•  Each functional unit must be used at the same stage for all instructions:

–  Load uses Register File’s Write Port during its 5th stage

–  R-type uses Register File’s Write Port during its 4th stage

•  Solution: Delay R-type’s register write by one cycle:
–  Now R-type instructions also use Reg File’s write port at Stage 5
–  Mem stage is a NOOP stage: nothing is being done.

Ifetch Reg/Dec Exec Mem Wr Load
1 2 3 4 5

Ifetch Reg/Dec Exec Wr R-type
1 2 3 4

Ifetch Reg/Dec Exec Wr R-type Mem
1 2 3 4 5

205

Pipelining the R-type Instruction

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem Wr R-type

Ifetch Reg/Dec Mem Wr R-type

Ifetch Reg/Dec Exec Mem Wr Load

Ifetch Reg/Dec Mem Wr R-type

Ifetch Reg/Dec Mem Wr R-type

Exec

Exec

Exec

Exec

206

The Four Stages of Store
•  Ifetch: Fetch the instruction from the Instruction Memory
•  Reg/Dec: Register Fetch and Instruction Decode
•  Exec: Calculate the memory address
•  Mem: Write the data into the Data Memory
•  Wr: NOOP

•  Compatible with Load & R-type instructions

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec Mem Store Wr

207

The Stages of Branch
•  Ifetch: Fetch the instruction from the Instruction Memory
•  Reg/Dec: Register Fetch and Instruction Decode, compute branch target
•  Exec: Test condition & update the PC
•  Mem: NOOP
•  Wr: NOOP

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec Mem Beq Wr

208

Control Hazard

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem Wr R-type

Ifetch Reg/Dec Mem Wr beq

Ifetch Reg/Dec Exec Mem Wr load

Ifetch Reg/Dec Mem Wr R-type

Ifetch Reg/Dec Mem Wr R-type

Exec

Exec

Exec

Exec

•  Branch updates the PC at the end of the Exec stage.

209
R

egister

R
egister

R
egister

R
egister

•  When can we compute branch target address?
•  When can we compute beq condition?

Accelerate Branches

PC

Data
Memory

Instr.
Memory

Register
File

Register
File

IF
Instruction

Fetch

RF
Register

Fetch

EX
Execute

MEM
Data

Memory

WB
Writeback

210

Control Hazard 2

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem Wr R-type

Ifetch Reg/Dec Mem Wr beq

Ifetch Reg/Dec Exec Mem Wr load

Ifetch Reg/Dec Mem Wr R-type

Ifetch Reg/Dec Mem Wr R-type

Exec

Exec

Exec

Exec

•  Branch updates the PC at the end of the Reg/Dec stage.

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec Mem Beq Wr

211

•  Delay loading next instruction, load no-op instead

•  CPI if all other instructions take 1 cycle, and branches are 20% of
instructions?

Solution #1: Stall

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem Wr R-type

Ifetch Reg/Dec Mem Wr beq

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Mem Wr R-type

Ifetch Reg/Dec Mem Wr R-type

Exec

Exec

Exec

Exec

Bubb
le

Bubb
le

Bubb
le

Bubb
le Stall

212

Solution #2: Branch Prediction

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem Wr R-type

Ifetch Reg/Dec Mem Wr beq

Ifetch Reg/Dec Exec Mem Wr load

Ifetch Reg/Dec Mem Wr R-type

Ifetch Reg/Dec Mem Wr R-type

Exec

Exec

Exec

Exec

•  Guess all branches not taken, squash if wrong

•  CPI if 50% of branches actually not taken, and branch frequency 20%?

213

Solution #3: Branch Delay Slot
•  Redefine branches: Instruction directly after branch always executed

 Instruction after branch is the delay slot

Compiler/assembler fills the delay slot

add $t1, $t0, $t0
beq $t2, $t3, FOO

sub $t2, $t0, $t3
add $t1, $t0, $t0
beq $t1, $t3, FOO

 add $t1, $t0, $t0
 beq $t1, $t3, FOO

 add $t1, $t3, $t3
 …
FOO:
 add $t1, $t2, $t0

add $t1, $t0, $t0
beq $t1, $t3, FOO

214

Data Hazards
•  Consider the following code:

–  add $t0, $t1, $t2
–  sub $t3, $t0, $t4
–  and $t5, $t0, $t7
–  or $t8, $t0, $s0
–  xor $s1, $t0, $s2

Mem

Wr Exec

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem Wr add

Ifetch Reg/Dec Mem sub

Ifetch Reg/Dec Exec Wr and

Ifetch Reg/Dec Mem Wr or

Ifetch Reg/Dec Mem Wr xor

Exec

Exec

Exec

215

Design Register File Carefully
What if reads see value after write during the same cycle?

Mem

Wr Exec

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem Wr add

Ifetch Reg/Dec Mem sub

Ifetch Reg/Dec Exec Wr and

Ifetch Reg/Dec Mem Wr or

Ifetch Reg/Dec Mem Wr xor

Exec

Exec

Exec

add $t0, $t1, $t2

sub $t3, $t0, $t4

and $t5, $t0, $t7

or $t8, $t0, $s0

xor $s1, $t0, $s2

216

Forwarding
•  Add logic to pass last two values from ALU output to ALU input(s) as

needed
–  Forward the ALU output to later instructions

Mem

Wr Exec

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem Wr add

Ifetch Reg/Dec Mem sub

Ifetch Reg/Dec Exec Wr and

Ifetch Reg/Dec Mem Wr or

Ifetch Reg/Dec Mem Wr xor

Exec

Exec

Exec

add $t0, $t1, $t2
sub $t3, $t0, $t4
and $t5, $t0, $t7
or $t8, $t0, $s0
xor $s1, $t0, $s2

217

R
egister

R
egister

R
egister

R
egister

•  Requires values from last two ALU operations.
•  Remember destination register for operation.
•  Compare sources of current instruction to destinations of previous 2.

Forwarding (cont.)

PC

Data
Memory

Instr.
Memory

Register
File

Register
File

IF
Instruction

Fetch

RF
Register

Fetch

EX
Execute

MEM
Data

Memory

WB
Writeback

218

Data Hazards on Loads
load $t0, 0($t1)
sub $t3, $t0, $t4
and $t5, $t0, $t7
or $t8, $t0, $s0
xor $s1, $t0, $s2

Mem

Wr Exec

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem Wr load

Ifetch Reg/Dec Mem sub

Ifetch Reg/Dec Exec Wr and

Ifetch Reg/Dec Mem Wr or

Ifetch Reg/Dec Mem Wr xor

Exec

Exec

Exec

219

Data Hazards on Loads
•  Solution:

–  Use same forwarding hardware & register file for hazards 2+ cycles
later

–  Force compiler to not allow register reads within a cycle of load
•  Fill delay slot, or insert no-op.

220

Pipelined CPI, cycle time
•  CPI, assuming compiler can fill 50% of delay slots

Pipelined: cycle time = 1ns. Delay for 1M instr:
Multicycle: CPI = 4.0, cycle time = 1ns. Delay for 1M instr:
Single cycle: CPI = 1.0, cycle time = 4.5ns. Delay for 1M instr:

Instruction Type Type Cycles Type Frequency Cycles * Freq

ALU 50%

Load 20%

Store 10%

Branch 20%

CPI:

221

Pipelined CPU Summary

