

ModelSim® SE Tutorial

Software Version 6.3h July 2008

© 1991-2008 Mentor Graphics Corporation All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this document may duplicate this document in whole or in part for internal business purposes only, provided that this entire notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make changes in specifications and other information contained in this publication without prior notice, and the reader should, in all cases, consult Mentor Graphics to determine whether any changes have been made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in written agreements between Mentor Graphics and its customers. No representation or other affirmation of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely at private expense and are commercial computer software provided with restricted rights. Use, duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:

Mentor Graphics Corporation 8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777. Telephone: 503.685.7000 Toll-Free Telephone: 800.592.2210 Website: www.mentor.com SupportNet: supportnet.mentor.com/ Send Feedback on Documentation: supportnet.mentor.com/user/feedback_form.cfm

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics' trademarks may be viewed at: www.mentor.com/terms_conditions/trademarks.cfm.

Table of Contents

Chapter 1	
Introduction	13
Assumptions	13
Where to Find Our Documentation	13
Download a Free PDF Reader With Search	14
Mentor Graphics Support.	14
Additional Support	15 15
Before you Begin	15 15
Chapter 2	
Conceptual Overview	17
Design Optimizations.	17
Basic Simulation Flow	17
Project Flow.	18
Multiple Library Flow	19
Debugging Tools	20
Chapter 3	
Basic Simulation	23
Create the Working Design Library	24
Run the Simulation	28
Set Breakpoints and Step through the Source	30
Navigating the Interface	33
Chapter 4	
Projects	39
Create a New Project	39
Add Objects to the Project	40
Changing Compile Order (VHDL)	42
Compile the Design.	43
Load the Design	44
Organizing Projects with Folders.	45
Add Folders.	45
Moving Files to Folders	47 48
	40
Chapter 5	F2
Working With Multiple Libraries	53
Creating the Resource Library	53
Creating the Project	55

Linking to the Resource Library	56 57
Linking in VHDL Permanently Mapping VHDL Resource Libraries	58 60
Chapter 6 Simulating Designs With SystemC	63
Setting up the EnvironmentPreparing an OSCI SystemC designCompiling a SystemC-only DesignMixed SystemC and HDL ExampleViewing SystemC Objects in the GUI	64 64 68 68 72
Setting Breakpoints and Stepping in the Source Window Examining SystemC Objects and Variables Removing a Breakpoint	73 75 76
Chapter 7 Analyzing Waveforms	79
Loading a Design. Add Objects to the Wave Window Zooming the Waveform Display. Using Cursors in the Wave Window Working with a Single Cursor Working with Multiple Cursors Saving and Reusing the Window Format	80 80 82 82 83 84 85
Chapter 8 Creating Stimulus With Waveform Editor	87
Load a Design Unit Create Graphical Stimulus with a Wizard Edit Waveforms in the Wave Window Save and Reuse the Wave Commands Exporting the Created Waveforms Simulating with the Testbench File Importing an EVCD File	87 88 91 94 94 96 98
Chapter 9 Debugging With The Dataflow Window	101
Exploring ConnectivityTracing EventsTracing an X (Unknown)Displaying Hierarchy in the Dataflow Window	102 104 108 110
Chapter 10 Viewing And Initializing Memories	113
View a Memory and its Contents	114 118

Table of Contents

Export Memory Data to a File Initialize a Memory Interactive Debugging Commands	120 121 124
Chapter 11 Analyzing Performance With The Profiler	129
View Profile Details	134 135
Chapter 12 Simulating With Code Coverage	139
Coverage Statistics in the Main window Coverage Statistics in the Source Window Toggle Statistics in the Objects Pane Excluding Lines and Files from Coverage Statistics Creating Code Coverage Reports	143 145 147 147 148
Chapter 13 Comparing Waveforms	151
Creating the Reference Dataset . Creating the Test Dataset . Comparing the Simulation Runs . Viewing Comparison Data . Comparison Data in the Wave Window . Comparison Data in the List Window . Saving and Reloading Comparison Data .	152 152 154 155 155 156 157
Chapter 14 Automating Simulation	161
Creating a Simple DO File	161 162

Index

End-User License Agreement

List of Examples

List of Figures

Figure 2-1. Basic Simulation Flow - Overview Lab	18
Figure 2-2. Project Flow	19
Figure 2-3. Multiple Library Flow	20
Figure 3-1. Basic Simulation Flow - Simulation Lab	23
Figure 3-2. The Create a New Library Dialog	24
Figure 3-3. work Library in the Workspace.	25
Figure 3-4. Compile Source Files Dialog	26
Figure 3-5. Verilog Modules Compiled into work Library	26
Figure 3-6. Workspace sim Tab Displays Design Hierarchy	27
Figure 3-7. Object Pane Displays Design Objects.	28
Figure 3-8. Using the Popup Menu to Add Signals to Wave Window	29
Figure 3-9. Waves Drawn in Wave Window	29
Figure 3-10. Setting Breakpoint in Source Window	30
Figure 3-11. Setting Restart Functions	31
Figure 3-12. Blue Arrow Indicates Where Simulation Stopped	32
Figure 3-13. Values Shown in Objects Window	32
Figure 3-14. Parameter Name and Value in Source Examine Window	33
Figure 3-15. The Main Window	34
Figure 3-16. Window/Pane Control Icons	35
Figure 3-17. zooming in on Workspace Pane	36
Figure 3-18. Panes Rearranged in Main Window	37
Figure 4-1. Create Project Dialog - Project Lab	40
Figure 4-2. Adding New Items to a Project	41
Figure 4-3. Add file to Project Dialog	41
Figure 4-4. Newly Added Project Files Display a "?" for Status	42
Figure 4-5. Compile Order Dialog	43
Figure 4-6. Library Tab with Expanded Library	44
Figure 4-7. Structure Tab for a Loaded Design	45
Figure 4-8. Adding New Folder to Project	46
	46
	46
Figure 4-11. A folder with a Sub-folder	47
Figure 4-12. Changing File Location via the Project Compiler Settings Dialog	47
Figure 4-13. Simulation Configuration Dialog	49
Figure 4-14. A Simulation Configuration in the Project Tab	50
Figure 4-15. Transcript Shows Options for Simulation Configurations	50
Figure 5-1. Creating New Resource Library	54
Figure 5-2. Compiling into the Resource Library	55
Figure 5-3. VHDL Simulation Warning Reported in Main Window	57
Figure 5-4. Specifying a Search Library in the Simulate Dialog.	58

Figure 5-6. Adding LIBRARY and USE Statements to the Testbench.60Figure 6-1. SystemC Code Before and After Modifications66Figure 6-2. Editing the SystemC Header File.67Figure 6-3. The ringbuf. File.70Figure 6-4. The test, ringbuf Opsign71Figure 6-5. SystemC Objects in the work Library.72Figure 6-6. SystemC Objects in the work Library.72Figure 6-7. SystemC Objects in the sim Tab of the Workspace72Figure 6-8. Active Breakpoint in a SystemC File73Figure 6-9. Simulation Stopped at Breakpoint74Figure 6-10. Stepping into a Separate File.74Figure 6-11. Output of show Command75Figure 7-12. SystemC Finitive Channels in the Wave Window76Figure 7-2. Undocking the Wave Window79Figure 7-3. Zooming in with the Mouse Pointer82Figure 7-4. Working with a Single Cursor in the Wave Window83Figure 7-5. Renaming a Cursor84Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane89Figure 8-2. Create Pattern Wizard from the Objects Pane89Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-4. The clk Waveform91Figure 8-5. The reset Waveform Meatures92Figure 8-6. Edit Insert Pulse Dialog91Figure 8-7. Signal reset with an Inserted Pulse92Figure 8-8. Edit Stretch Edge Dialog93Figure 8-9. The counter Waveform Meatures96Figure 8-10. Deleting an Edge on the clk Signal93Figure 8-10. Deleting	Figure 5.5 Manning to the ports, like Likenery	50
Figure 6-1. SystemC Code Before and After Modifications66Figure 6-2. Editing the SystemC Header File.67Figure 6-3. The ringbuf. heile.70Figure 6-4. The test_ringbuf.cpp File70Figure 6-5. The test_ringbuf Design71Figure 6-6. SystemC Objects in the work Library.72Figure 6-7. SystemC Objects in the sim Tab of the Workspace72Figure 6-8. Active Breakpoint in a SystemC File73Figure 6-9. Simulation Stopped at Breakpoint74Figure 6-10. Stepping into a Separate File.74Figure 6-11. Output of show Command75Figure 6-12. SystemC Primitive Channels in the Wave Window76Figure 7-12. Undocking the Wave Window76Figure 7-2. Undocking the Wave Window81Figure 7-3. Zooming in with the Mouse Pointer82Figure 7-4. Working with a Single Cursor in the Wave Window83Figure 7-6. Interval Measurement Between Two Cursors.85Figure 8-7. A Locked Cursor in the Wave Window85Figure 8-8. Specifying Clock Pattern Wizard from the Objects Pane.89Figure 8-9. Streichtyng Clock Pattern Attributes90Figure 8-9. Streicht Badge On the <i>clk</i> Signal.93Figure 8-9. Streicht Barekerom Reacts to Stimulus Patterns.96Figure 8-10. Deleting an Edge on the <i>clk</i> Signal.93Figure 8-11. The Export Waveform Reacts to Stimulus Patterns.96Figure 8-12. The counter Waveform Reacts to Stimulus Patterns.96Figure 8-14. The Export Testbench Compiled into the work Library.97Figu	Figure 5-5. Mapping to the parts_lib Library	59 60
Figure 6-2. Editing the SystemC Header File.67Figure 6-3. The ringbuf.h File.70Figure 6-4. The test_ringbuf pesign71Figure 6-5. The test_ringbuf Design71Figure 6-6. SystemC Objects in the work Library.72Figure 6-7. SystemC Objects in the sim Tab of the Workspace72Figure 6-8. Active Breakpoint in a SystemC File73Figure 6-9. Simulation Stopped at Breakpoint74Figure 6-10. Stepping into a Separate File74Figure 6-11. Output of show Command75Figure 7-11. Output of show Command75Figure 7-2. Undocking the Wave Window76Figure 7-3. Zooming in with the Mouse Pointer81Figure 7-4. Working with a Single Cursor in the Wave Window83Figure 7-5. Renaming a Cursor84Figure 7-6. Interval Measurement Between Two Cursors.85Figure 8-7. A Locked Cursor in the Wave Window85Figure 8-8. Specifying Clock Pattern Mizard from the Objects Pane.89Figure 8-7. Signal <i>reset</i> Waveform90Figure 8-7. Signal <i>reset</i> with an Inserted Pulse92Figure 8-7. Signal <i>reset</i> with an Inserted Pulse.92Figure 8-7. Signal <i>reset</i> with an Inserted Pulse.93Figure 8-8. Edit Instruct Maye form Nealog93Figure 8-1. The export Waveform Nealog93Figure 8-1. The south Waveform Nealog93Figure 8-1. Signal <i>reset</i> with an Inserted Pulse.92Figure 8-1. Signal <i>reset</i> with Waveform Nealog93Figure 8-1. The counter Waveform Nealog93 <td></td> <td></td>		
Figure 6-3. The ringbuf.h File.70Figure 6-4. The test_ringbuf.cpp File70Figure 6-5. The test_ringbuf.cpp File70Figure 6-6. SystemC Objects in the work Library.72Figure 6-7. SystemC Objects in the sim Tab of the Workspace72Figure 6-8. Active Breakpoint in a SystemC File73Figure 6-9. Simulation Stopped at Breakpoint74Figure 6-10. Stepping into a Separate File.74Figure 6-11. Output of show Command75Figure 6-12. SystemC Primitive Channels in the Wave Window76Figure 7-1. Panes of the Wave Window79Figure 7-2. Undocking the Wave Window79Figure 7-3. Zooming in with the Mouse Pointer82Figure 7-4. Working with a Single Cursor in the Wave Window83Figure 7-5. Renaming a Cursor84Figure 7-6. Interval Measurement Between Two Cursors.85Figure 8-7. A Locked Cursor in the Wave Window85Figure 8-8. Specifying Clock Pattern Wizard from the Objects Pane.89Figure 8-9. The <i>clk</i> Waveform.90Figure 8-7. Signal <i>reset</i> Waveform91Figure 8-7. Signal <i>reset</i> Waveform Attributes92Figure 8-8. Edit Insert Pulse Dialog91Figure 8-10. Deleting an Edge on the <i>clk</i> Signal.93Figure 8-11. The texport Waveform Neactot Stimulus Patterns.96Figure 8-12. The ounter Waveform Neactot Stimulus Patterns.96Figure 8-13. The <i>export</i> Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench.97Figur		
Figure 6-4. The test_ringbuf.cpp File70Figure 6-5. The test_ringbuf Design71Figure 6-6. SystemC Objects in the work Library.72Figure 6-7. SystemC Objects in the sim Tab of the Workspace72Figure 6-7. SystemC Dictox in the sim Tab of the Workspace72Figure 6-9. Simulation Stopped at Breakpoint74Figure 6-10. Stepping into a Separate File.74Figure 6-11. Output of show Command75Figure 6-12. SystemC Primitive Channels in the Wave Window76Figure 7-1. Panes of the Wave Window79Figure 7-2. Undocking the Wave Window79Figure 7-3. Zooming in with the Mouse Pointer82Figure 7-4. Working with a Single Cursor in the Wave Window83Figure 7-5. Renaming a Cursor84Figure 7-6. Interval Measurement Between Two Cursors.85Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane.89Figure 8-2. Create Pattern Wizard89Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-5. The <i>reset</i> Waveform91Figure 8-7. Signal <i>reset</i> with an Inserted Pulse92Figure 8-7. Signal <i>reset</i> with an Inserted Pulse92Figure 8-9. Stretching an Edge on the <i>clk</i> Signal.93Figure 8-15. EVCD File Loaded in Wave Window93Figure 8-16. Simulation results with EVCD File99Figure 8-15. EVCD File Loaded in Wave Window93Figure 8-16. Simulation results with EVCD File99Figure 8-16. Simulation results with EVCD File99Figure 8-17.		
Figure 6-5. The test_ringbuf Design71Figure 6-6. SystemC Objects in the work Library.72Figure 6-7. SystemC Objects in the sim Tab of the Workspace72Figure 6-8. Active Breakpoint in a SystemC File73Figure 6-9. Simulation Stopped at Breakpoint74Figure 6-10. Stepping into a Separate File74Figure 6-11. Output of show Command75Figure 6-12. SystemC Primitive Channels in the Wave Window76Figure 7-1. Panes of the Wave Window79Figure 7-3. Zooming in with the Mouse Pointer81Figure 7-4. Working with a Single Cursor in the Wave Window83Figure 7-5. Renaming a Cursor84Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane89Figure 8-2. Create Pattern Wizard from the Objects Pane89Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-4. The <i>clk</i> Waveform90Figure 8-5. The <i>reset</i> Waveform91Figure 8-6. Edit Insert Pulse Dialog91Figure 8-7. Signal <i>reset</i> with an Inserted Pulse92Figure 8-8. Edit Stretch Edge Dialog92Figure 8-10. Deleting an Edge on the <i>clk</i> Signal93Figure 8-11. The Export Waveform Reacts to Stimulus Patterns96Figure 8-12. The counter Waveform Reacts to Stimulus Patterns96Figure 8-13. The <i>export</i> Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench97Figure 8-15. EVCD File Loaded in Wave Window98Figure 8-16. Simulation results with EVCD File99		
Figure 6-6. SystemC Objects in the work Library.72Figure 6-7. SystemC Objects in the sim Tab of the Workspace72Figure 6-8. Active Breakpoint in a SystemC File73Figure 6-9. Simulation Stopped at Breakpoint74Figure 6-10. Stepping into a Separate File.74Figure 6-11. Output of show Command75Figure 7-1. Panes of the Wave Window76Figure 7-2. Undocking the Wave Window79Figure 7-3. Zooming in with the Mouse Pointer82Figure 7-4. Working with a Single Cursor in the Wave Window83Figure 7-5. Renaming a Cursor84Figure 7-6. Interval Measurement Between Two Cursors.85Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane89Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-4. The <i>clk</i> Waveform90Figure 8-5. The <i>reset</i> Waveform91Figure 8-7. Signal <i>reset</i> with an Inserted Pulse.92Figure 8-8. Edit Insert Pulse Dialog91Figure 8-9. Stretching an Edge on the <i>clk</i> Signal.93Figure 8-10. Deleting an Edge on the <i>clk</i> Signal.93Figure 8-11. The export Waveform Reacts to Stimulus Patterns.96Figure 8-13. He axport Testbench Compiled into the work Library97Figure 8-14. Wavesform Reacts to Stimulus Patterns.96Figure 8-15. EVCD File Loaded in Wave Window98Figure 8-14. Wavesform Neaded to Show All Drivers97Figure 8-15. EVCD File Loaded in Wave Window98Figure 8-14. Wavesform Neades to Stimulus Patterns.96<	• • •	
Figure 6-7. SystemC Objects in the sim Tab of the Workspace72Figure 6-8. Active Breakpoint in a SystemC File73Figure 6-9. Simulation Stopped at Breakpoint74Figure 6-10. Stepping into a Separate File74Figure 6-11. Output of show Command75Figure 6-12. SystemC Primitive Channels in the Wave Window76Figure 7-1. Panes of the Wave Window79Figure 7-2. Undocking the Wave Window81Figure 7-3. Zooming in with the Mouse Pointer82Figure 7-4. Working with a Single Cursor in the Wave Window83Figure 7-5. Renaming a Cursor84Figure 7-6. Interval Measurement Between Two Cursors.85Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane89Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-5. The reset Waveform91Figure 8-7. Signal reset with an Inserted Pulse92Figure 8-8. Edit Stretch Edge Dialog91Figure 8-9. Stretching an Edge on the clk Signal93Figure 8-10. Deleting an Edge on the clk Signal93Figure 8-11. The Export Waveform Reacts to Stimulus Patterns.96Figure 8-15. EVCD File Loaded in Wave Window98Figure 8-16. Simulation results with EVCD File99Figure 8-17. The counter Waveform Dialog.95Figure 8-11. The Export Waveform Dialog.97Figure 8-15. EVCD File Loaded in Wave Window98Figure 8-16. Simulation results with EVCD File99 <trd>Figure 9-17.</trd>		
Figure 6-8. Active Breakpoint in a SystemC File73Figure 6-9. Simulation Stopped at Breakpoint74Figure 6-10. Stepping into a Separate File74Figure 6-11. Output of show Command75Figure 6-12. SystemC Primitive Channels in the Wave Window76Figure 7-1. Panes of the Wave Window79Figure 7-3. Zooming in with the Mouse Pointer82Figure 7-4. Working with a Single Cursor in the Wave Window83Figure 7-5. Renaming a Cursor84Figure 7-6. Interval Measurement Between Two Cursors85Figure 7-7. A Locked Cursor in the Wave Window85Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane89Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-5. The <i>reset</i> Waveform91Figure 8-6. Edit Insert Pulse Dialog91Figure 8-7. Signal <i>reset</i> with an Inserted Pulse92Figure 8-8. Bedit Stretch Edge Dialog92Figure 8-9. Stretching an Edge on the <i>clk</i> Signal93Figure 8-10. Deleting an Edge on the <i>clk</i> Signal93Figure 8-13. The <i>export</i> Testbench Compiled into the work Library97Figure 8-14. Waveform Newly Created Testbench97Figure 8-15. EVCD File Loaded in Wave Window98Figure 8-16. Signal in the Dataflow Window98Figure 8-16. Signal in the Dataflow Window98Figure 8-17. The expanded to Show All Drivers90Figure 8-16. Signal in the Dataflow Window98Figure 8-17. The expanded to Show All Drivers97Figure 9-2. S		
Figure 6-9. Simulation Stopped at Breakpoint74Figure 6-10. Stepping into a Separate File.74Figure 6-11. Output of show Command75Figure 6-12. SystemC Primitive Channels in the Wave Window76Figure 7-1. Panes of the Wave Window79Figure 7-2. Undocking the Wave Window81Figure 7-3. Zooming in with the Mouse Pointer82Figure 7-4. Working with a Single Cursor in the Wave Window83Figure 7-5. Renaming a Cursor84Figure 7-6. Interval Measurement Between Two Cursors85Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane.89Figure 8-2. Create Pattern Wizard90Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-5. The <i>reset</i> Waveform91Figure 8-6. Edit Insert Pulse Dialog91Figure 8-7. Signal <i>reset</i> with an Inserted Pulse.92Figure 8-9. Stretching an Edge on the <i>clk</i> Signal.93Figure 8-10. Deleting an Edge on the <i>clk</i> Signal.93Figure 8-13. The <i>export</i> Testbench Compiled into the work Library97Figure 8-14. Waves form Newly Created Testbench.97Figure 8-15. EVCD File Loaded in Wave Window98Figure 8-16. Simulation results with EVCD File99Figure 8-17. The coanter Waveform Bialog.93Figure 8-19. The coanter Waveform Reacts to Stimulus Patterns.96Figure 8-10. Deleting an Edge on the <i>clk</i> Signal.93Figure 8-15. EVCD File Loaded in Wave Window98Figure 8-16. Simulation results with EVCD File99		
Figure 6-10. Stepping into a Separate File.74Figure 6-11. Output of show Command75Figure 6-12. SystemC Primitive Channels in the Wave Window76Figure 7-1. Panes of the Wave Window79Figure 7-2. Undocking the Wave Window81Figure 7-3. Zooming in with the Mouse Pointer82Figure 7-4. Working with a Single Cursor in the Wave Window83Figure 7-5. Renaming a Cursor84Figure 7-6. Interval Measurement Between Two Cursors85Figure 7-7. A Locked Cursor in the Wave Window85Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane.89Figure 8-2. Create Pattern Wizard90Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-5. The <i>reset</i> Waveform91Figure 8-6. Edit Insert Pulse Dialog91Figure 8-7. Signal <i>reset</i> with an Inserted Pulse92Figure 8-8. Edit Stretch Edge Dialog92Figure 8-9. Stretching an Edge on the <i>clk</i> Signal93Figure 8-10. Deleting an Edge on the <i>clk</i> Signal93Figure 8-13. The <i>export</i> Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench97Figure 8-15. EVCD File Loaded in Wave Window98Figure 8-16. Signal in the Dataflow Window98Figure 8-16. Hot neet Meave from Secue to Stimulus Patterns96Figure 8-14. Waves from Newly Created Testbench97Figure 8-15. EVCD File Loaded in Wave Window98Figure 9-1. A Signal in the Dataflow Window98Figure 9-2.		
Figure 6-11. Output of show Command75Figure 6-12. SystemC Primitive Channels in the Wave Window76Figure 7-1. Panes of the Wave Window79Figure 7-2. Undocking the Wave Window81Figure 7-3. Zooming in with the Mouse Pointer82Figure 7-4. Working with a Single Cursor in the Wave Window83Figure 7-5. Renaming a Cursor84Figure 7-6. Interval Measurement Between Two Cursors85Figure 7-7. A Locked Cursor in the Wave Window85Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane89Figure 8-2. Create Pattern Wizard89Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-4. The <i>clk</i> Waveform91Figure 8-5. The <i>reset</i> Waveform91Figure 8-6. Edit Insert Pulse Dialog91Figure 8-7. Signal <i>reset</i> with an Inserted Pulse92Figure 8-9. Stretching an Edge on the <i>clk</i> Signal93Figure 8-9. Stretching an Edge on the <i>clk</i> Signal93Figure 8-10. Deleting an Edge on the <i>clk</i> Signal93Figure 8-12. The counter Waveform Dialog.95Figure 8-13. The <i>export</i> Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench.97Figure 8-15. EVCD File Loaded in Wave Window103Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-4. The ets Net Expanded to Show All Drivers.104Figure 9-5. Signals Added to the Wave Viewer Automatically106 <td></td> <td></td>		
Figure 6-12. SystemC Primitive Channels in the Wave Window76Figure 7-1. Panes of the Wave Window79Figure 7-2. Undocking the Wave Window81Figure 7-3. Zooming in with the Mouse Pointer82Figure 7-4. Working with a Single Cursor in the Wave Window83Figure 7-5. Renaming a Cursor84Figure 7-6. Interval Measurement Between Two Cursors85Figure 7-7. A Locked Cursor in the Wave Window85Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane89Figure 8-2. Create Pattern Wizard90Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-4. The clk Waveform90Figure 8-5. The reset Waveform91Figure 8-6. Edit Insert Pulse Dialog91Figure 8-7. Signal reset with an Inserted Pulse92Figure 8-8. Edit Stretch Edge Dialog92Figure 8-9. Stretching an Edge on the clk Signal.93Figure 8-10. Deleting an Edge on the clk Signal.93Figure 8-11. The Export Waveform Dialog.95Figure 8-13. The export Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench.97Figure 8-15. EVCD File Loaded in Wave Window98Figure 8-16. Simulation results with EVCD File99Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers.104Figure 9-4. The embedded wave viewer pane105Figure 9-5. Sign		
Figure 7-1. Panes of the Wave Window79Figure 7-2. Undocking the Wave Window81Figure 7-3. Zooming in with the Mouse Pointer82Figure 7-4. Working with a Single Cursor in the Wave Window83Figure 7-5. Renaming a Cursor84Figure 7-6. Interval Measurement Between Two Cursors85Figure 7-7. A Locked Cursor in the Wave Window85Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane89Figure 8-2. Create Pattern Wizard89Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-4. The <i>clk</i> Waveform90Figure 8-5. The <i>reset</i> Waveform91Figure 8-6. Edit Insert Pulse Dialog91Figure 8-7. Signal <i>reset</i> with an Inserted Pulse92Figure 8-9. Stretching an Edge on the <i>clk</i> Signal93Figure 8-10. Deleting an Edge on the <i>clk</i> Signal93Figure 8-11. The Export Waveform Reacts to Stimulus Patterns96Figure 8-13. The <i>export</i> Testbench Compiled into the work Library97Figure 8-16. Simulation results with EVCD File99Figure 8-16. Simulation results with EVCD File99Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers104Figure 9-4. The enbedded wave viewer pane105Figure 9-5. Signals Added to the Wave Window103Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107	0 1	
Figure 7-2. Undocking the Wave Window81Figure 7-3. Zooming in with the Mouse Pointer82Figure 7-3. Zooming in with the Mouse Pointer82Figure 7-4. Working with a Single Cursor in the Wave Window83Figure 7-5. Renaming a Cursor84Figure 7-6. Interval Measurement Between Two Cursors85Figure 7-7. A Locked Cursor in the Wave Window85Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane89Figure 8-2. Create Pattern Wizard89Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-4. The clk Waveform90Figure 8-5. The reset Waveform91Figure 8-5. The reset Waveform91Figure 8-7. Signal reset with an Inserted Pulse92Figure 8-8. Edit Insert Pulse Dialog91Figure 8-9. Stretching an Edge on the clk Signal93Figure 8-10. Deleting an Edge on the clk Signal93Figure 8-13. The export Waveform Reacts to Stimulus Patterns.96Figure 8-14. Waves from Newly Created Testbench.97Figure 8-15. EVCD File Loaded in Wave Window98Figure 8-16. Simulation results with EVCD File99Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers104Figure 9-4. The embedded wave viewer pane105Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-5. Cursor in Wave Viewer Marks Last Event107Figure		
Figure 7-3. Zooming in with the Mouse Pointer82Figure 7-4. Working with a Single Cursor in the Wave Window83Figure 7-5. Renaming a Cursor84Figure 7-6. Interval Measurement Between Two Cursors85Figure 7-7. A Locked Cursor in the Wave Window85Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane89Figure 8-2. Create Pattern Wizard89Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-4. The <i>clk</i> Waveform90Figure 8-5. The <i>reset</i> Waveform91Figure 8-5. The <i>reset</i> Waveform91Figure 8-7. Signal <i>reset</i> with an Inserted Pulse92Figure 8-8. Edit Insert Pulse Dialog92Figure 8-9. Stretching an Edge on the <i>clk</i> Signal93Figure 8-10. Deleting an Edge on the <i>clk</i> Signal93Figure 8-11. The Export Waveform Dialog.95Figure 8-12. The counter Waveform Reacts to Stimulus Patterns.96Figure 8-13. The <i>export</i> Testbench Compiled into the work Library97Figure 8-16. Simulation results with EVCD File99Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers104Figure 9-4. The embedded wave viewer pane105Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-7. Tracing the Event Set107Figure 9-7. Tracing the Event Set107		
Figure 7-4. Working with a Single Cursor in the Wave Window83Figure 7-5. Renaming a Cursor84Figure 7-5. Interval Measurement Between Two Cursors85Figure 7-6. Interval Measurement Between Two Cursors85Figure 7-7. A Locked Cursor in the Wave Window85Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane89Figure 8-2. Create Pattern Wizard89Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-4. The <i>clk</i> Waveform90Figure 8-5. The <i>reset</i> Waveform91Figure 8-6. Edit Insert Pulse Dialog91Figure 8-7. Signal <i>reset</i> with an Inserted Pulse92Figure 8-8. Edit Stretch Edge Dialog92Figure 8-9. Stretching an Edge on the <i>clk</i> Signal93Figure 8-10. Deleting an Edge on the <i>clk</i> Signal93Figure 8-13. The <i>export</i> Waveform Dialog95Figure 8-13. The <i>export</i> Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench97Figure 8-15. EVCD File Loaded in Wave Window98Figure 9-1. A Signal in the Dataflow Window98Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-4. The test Net Expanded to Show All Drivers104Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-5. Tracing the Event Set107Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107	6	
Figure 7-5. Renaming a Cursor84Figure 7-6. Interval Measurement Between Two Cursors.85Figure 7-7. A Locked Cursor in the Wave Window85Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane.89Figure 8-2. Create Pattern Wizard89Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-4. The clk Waveform.90Figure 8-5. The reset Waveform91Figure 8-6. Edit Insert Pulse Dialog91Figure 8-7. Signal reset with an Inserted Pulse92Figure 8-8. Edit Stretch Edge Dialog.92Figure 8-9. Stretching an Edge on the clk Signal.93Figure 8-10. Deleting an Edge on the clk Signal.93Figure 8-13. The export Waveform Dialog.95Figure 8-13. The export Waveform Reacts to Stimulus Patterns.96Figure 8-14. Waves from Newly Created Testbench.97Figure 8-15. EVCD File Loaded in Wave Window98Figure 9-1. A Signal in the Dataflow Window98Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-4. The embedded wave viewer pane.105Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-5. Cursor in Wave Viewer Marks Last Event.107Figure 9-7. Tracing the Event Set107		
Figure 7-6. Interval Measurement Between Two Cursors.85Figure 7-7. A Locked Cursor in the Wave Window85Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane89Figure 8-2. Create Pattern Wizard89Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-4. The <i>clk</i> Waveform90Figure 8-5. The <i>reset</i> Waveform91Figure 8-6. Edit Insert Pulse Dialog91Figure 8-7. Signal <i>reset</i> with an Inserted Pulse92Figure 8-8. Edit Stretch Edge Dialog92Figure 8-9. Stretching an Edge on the <i>clk</i> Signal93Figure 8-10. Deleting an Edge on the <i>clk</i> Signal93Figure 8-11. The Export Waveform Dialog95Figure 8-13. The <i>export</i> Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench.97Figure 8-15. EVCD File Loaded in Wave Window98Figure 9-1. A Signal in the Dataflow Window98Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers104Figure 9-4. The embedded wave viewer pane105Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107	e e	
Figure 7-7. A Locked Cursor in the Wave Window85Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane89Figure 8-2. Create Pattern Wizard89Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-4. The <i>clk</i> Waveform90Figure 8-5. The <i>reset</i> Waveform91Figure 8-5. The <i>reset</i> Waveform91Figure 8-6. Edit Insert Pulse Dialog91Figure 8-7. Signal <i>reset</i> with an Inserted Pulse92Figure 8-8. Edit Stretch Edge Dialog92Figure 8-9. Stretching an Edge on the <i>clk</i> Signal93Figure 8-10. Deleting an Edge on the <i>clk</i> Signal93Figure 8-11. The Export Waveform Dialog95Figure 8-12. The counter Waveform Reacts to Stimulus Patterns96Figure 8-13. The <i>export</i> Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench97Figure 8-15. EVCD File Loaded in Wave Window98Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers104Figure 9-4. The embedded wave viewer pane105Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107	6	
Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane.89Figure 8-2. Create Pattern Wizard .89Figure 8-3. Specifying Clock Pattern Attributes .90Figure 8-3. Specifying Clock Pattern Attributes .90Figure 8-4. The <i>clk</i> Waveform .90Figure 8-5. The <i>reset</i> Waveform .91Figure 8-5. The <i>reset</i> Waveform .91Figure 8-6. Edit Insert Pulse Dialog .91Figure 8-7. Signal <i>reset</i> with an Inserted Pulse .92Figure 8-8. Edit Stretch Edge Dialog .92Figure 8-9. Stretching an Edge on the <i>clk</i> Signal .93Figure 8-10. Deleting an Edge on the <i>clk</i> Signal .93Figure 8-11. The Export Waveform Dialog .95Figure 8-12. The counter Waveform Reacts to Stimulus Patterns .96Figure 8-13. The <i>export</i> Testbench Compiled into the work Library .97Figure 8-14. Waves from Newly Created Testbench .97Figure 8-15. EVCD File Loaded in Wave Window .98Figure 9-1. A Signal in the Dataflow Window .103Figure 9-2. Expanding the View to Display Connected Processes .103Figure 9-3. The test Net Expanded to Show All Drivers .104Figure 9-4. The embedded wave viewer pane .105Figure 9-5. Signals Added to the Wave Viewer Automatically .106Figure 9-7. Tracing the Event Set .107Figure 9-7. Tracing the Event Set .107	-	
Figure 8-2. Create Pattern Wizard.89Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-3. The clk Waveform.90Figure 8-5. The reset Waveform91Figure 8-5. The reset Waveform91Figure 8-6. Edit Insert Pulse Dialog91Figure 8-7. Signal reset with an Inserted Pulse92Figure 8-8. Edit Stretch Edge Dialog.92Figure 8-9. Stretching an Edge on the clk Signal.93Figure 8-10. Deleting an Edge on the clk Signal93Figure 8-11. The Export Waveform Dialog.95Figure 8-12. The counter Waveform Reacts to Stimulus Patterns.96Figure 8-13. The export Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench.97Figure 8-15. EVCD File Loaded in Wave Window98Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers.104Figure 9-4. The embedded wave viewer pane105Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107	•	
Figure 8-3. Specifying Clock Pattern Attributes90Figure 8-4. The clk Waveform.90Figure 8-5. The reset Waveform91Figure 8-5. The reset Waveform91Figure 8-6. Edit Insert Pulse Dialog91Figure 8-7. Signal reset with an Inserted Pulse92Figure 8-8. Edit Stretch Edge Dialog.92Figure 8-9. Stretching an Edge on the clk Signal.93Figure 8-10. Deleting an Edge on the clk Signal.93Figure 8-11. The Export Waveform Dialog.95Figure 8-12. The counter Waveform Reacts to Stimulus Patterns.96Figure 8-13. The export Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench.97Figure 8-15. EVCD File Loaded in Wave Window98Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers.104Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107		
Figure 8-4. The clk Waveform.90Figure 8-5. The reset Waveform91Figure 8-5. The reset Waveform91Figure 8-6. Edit Insert Pulse Dialog91Figure 8-7. Signal reset with an Inserted Pulse92Figure 8-8. Edit Stretch Edge Dialog.92Figure 8-9. Stretching an Edge on the clk Signal.93Figure 8-10. Deleting an Edge on the clk Signal.93Figure 8-11. The Export Waveform Dialog.95Figure 8-12. The counter Waveform Reacts to Stimulus Patterns.96Figure 8-13. The export Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench.97Figure 8-15. EVCD File Loaded in Wave Window98Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers.104Figure 9-4. The embedded wave viewer pane105Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-7. Tracing the Event Set107		
Figure 8-5. The reset Waveform91Figure 8-6. Edit Insert Pulse Dialog91Figure 8-6. Edit Insert Pulse Dialog92Figure 8-7. Signal reset with an Inserted Pulse92Figure 8-8. Edit Stretch Edge Dialog92Figure 8-9. Stretching an Edge on the clk Signal93Figure 8-10. Deleting an Edge on the clk Signal93Figure 8-11. The Export Waveform Dialog95Figure 8-12. The counter Waveform Reacts to Stimulus Patterns.96Figure 8-13. The export Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench.97Figure 8-15. EVCD File Loaded in Wave Window98Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers.104Figure 9-4. The embedded wave viewer pane105Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-7. Tracing the Event Set107		
Figure 8-6. Edit Insert Pulse Dialog91Figure 8-7. Signal reset with an Inserted Pulse92Figure 8-8. Edit Stretch Edge Dialog92Figure 8-9. Stretching an Edge on the clk Signal93Figure 8-10. Deleting an Edge on the clk Signal93Figure 8-11. The Export Waveform Dialog95Figure 8-12. The counter Waveform Reacts to Stimulus Patterns96Figure 8-13. The export Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench97Figure 8-15. EVCD File Loaded in Wave Window98Figure 9-1. A Signal in the Dataflow Window103Figure 9-3. The test Net Expanded to Show All Drivers104Figure 9-4. The embedded wave viewer pane105Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107		90
Figure 8-7. Signal reset with an Inserted Pulse92Figure 8-8. Edit Stretch Edge Dialog.92Figure 8-9. Stretching an Edge on the clk Signal.93Figure 8-10. Deleting an Edge on the clk Signal.93Figure 8-11. The Export Waveform Dialog.95Figure 8-12. The counter Waveform Reacts to Stimulus Patterns.96Figure 8-13. The export Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench.97Figure 8-15. EVCD File Loaded in Wave Window98Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-4. The embedded wave viewer pane105Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107	•	91
Figure 8-8. Edit Stretch Edge Dialog.92Figure 8-9. Stretching an Edge on the <i>clk</i> Signal.93Figure 8-10. Deleting an Edge on the <i>clk</i> Signal.93Figure 8-11. The Export Waveform Dialog.95Figure 8-12. The counter Waveform Reacts to Stimulus Patterns.96Figure 8-13. The <i>export</i> Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench.97Figure 8-15. EVCD File Loaded in Wave Window98Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers.104Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107	Figure 8-6. Edit Insert Pulse Dialog	91
Figure 8-9. Stretching an Edge on the <i>clk</i> Signal.93Figure 8-10. Deleting an Edge on the <i>clk</i> Signal.93Figure 8-11. The Export Waveform Dialog.95Figure 8-12. The counter Waveform Reacts to Stimulus Patterns.96Figure 8-13. The <i>export</i> Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench.97Figure 8-15. EVCD File Loaded in Wave Window98Figure 8-16. Simulation results with EVCD File99Figure 9-1. A Signal in the Dataflow Window103Figure 9-3. The test Net Expanded to Show All Drivers.104Figure 9-4. The embedded wave viewer pane105Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-7. Tracing the Event Set107Figure 9-7. Tracing the Event Set107	e e	92
Figure 8-10. Deleting an Edge on the <i>clk</i> Signal93Figure 8-11. The Export Waveform Dialog.95Figure 8-12. The counter Waveform Reacts to Stimulus Patterns.96Figure 8-13. The <i>export</i> Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench.97Figure 8-15. EVCD File Loaded in Wave Window98Figure 8-16. Simulation results with EVCD File99Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers.104Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107		92
Figure 8-11. The Export Waveform Dialog.95Figure 8-12. The counter Waveform Reacts to Stimulus Patterns.96Figure 8-13. The export Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench.97Figure 8-15. EVCD File Loaded in Wave Window98Figure 8-16. Simulation results with EVCD File99Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers104Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107	Figure 8-9. Stretching an Edge on the <i>clk</i> Signal.	93
Figure 8-12. The counter Waveform Reacts to Stimulus Patterns.96Figure 8-13. The export Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench.97Figure 8-15. EVCD File Loaded in Wave Window98Figure 8-16. Simulation results with EVCD File99Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers104Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107		93
Figure 8-13. The export Testbench Compiled into the work Library97Figure 8-14. Waves from Newly Created Testbench.97Figure 8-15. EVCD File Loaded in Wave Window98Figure 8-16. Simulation results with EVCD File99Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers104Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107	Figure 8-11. The Export Waveform Dialog	95
Figure 8-14. Waves from Newly Created Testbench.97Figure 8-15. EVCD File Loaded in Wave Window98Figure 8-16. Simulation results with EVCD File99Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers104Figure 9-4. The embedded wave viewer pane105Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107	Figure 8-12. The counter Waveform Reacts to Stimulus Patterns.	96
Figure 8-15. EVCD File Loaded in Wave Window98Figure 8-16. Simulation results with EVCD File99Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers104Figure 9-4. The embedded wave viewer pane105Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-7. Tracing the Event Set107	Figure 8-13. The <i>export</i> Testbench Compiled into the work Library	97
Figure 8-16. Simulation results with EVCD File99Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers104Figure 9-4. The embedded wave viewer pane105Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107	Figure 8-14. Waves from Newly Created Testbench.	97
Figure 9-1. A Signal in the Dataflow Window103Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers104Figure 9-4. The embedded wave viewer pane105Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107	Figure 8-15. EVCD File Loaded in Wave Window	98
Figure 9-2. Expanding the View to Display Connected Processes103Figure 9-3. The test Net Expanded to Show All Drivers104Figure 9-4. The embedded wave viewer pane105Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107	Figure 8-16. Simulation results with EVCD File	99
Figure 9-3. The test Net Expanded to Show All Drivers.104Figure 9-4. The embedded wave viewer pane105Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107	Figure 9-1. A Signal in the Dataflow Window	103
Figure 9-4. The embedded wave viewer pane105Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107	Figure 9-2. Expanding the View to Display Connected Processes	103
Figure 9-4. The embedded wave viewer pane105Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107	Figure 9-3. The test Net Expanded to Show All Drivers	104
Figure 9-5. Signals Added to the Wave Viewer Automatically106Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107		105
Figure 9-6. Cursor in Wave Viewer Marks Last Event107Figure 9-7. Tracing the Event Set107	-	106
Figure 9-7. Tracing the Event Set 107		107
	•	107
i gute y of it ofghun while emilie with ended i i i i i i i i i i i i i i i i i i	Figure 9-8. A Signal with Unknown Values	108

Figure 9-9. ChaseX Identifies Cause of Unknown on t_out	109
Figure 9-10. Displaying Hierarchy in the Dataflow Window	110
Figure 10-1. Viewing the Memories Tab in the Main Window Workspace	115
Figure 10-2. The mem Tab in the MDI Frame Shows Addresses and Data	115
Figure 10-3. The Memory Display Updates with the Simulation	116
Figure 10-4. Changing the Address Radix.	117
Figure 10-5. New Address Radix and Line Length	117
	118
	119
	119
Figure 10-9. Export Memory Dialog	120
Figure 10-10. Import Memory Dialog	122
	123
Figure 10-12. Data Increments Starting at Address 251	124
	125
	125
Figure 10-15. Random Content Generated for a Range of Addresses.	126
	126
	127
	127
	131
	131
Figure 11-3. Expand the Hierarchical Function Call Tree.	133
Figure 11-4. The Source Window Showing a Line from the Profile Data	134
	134
Figure 11-6. Profile Details of Function <i>sm_0</i>	135
Figure 11-7. The Profiler Toolbar	135
Figure 11-8. The Filtered Profile Data.	136
Figure 11-9. The Profile Report Dialog	136
Figure 11-10. The <i>calltree.rpt</i> Report	137
Figure 12-1. Code Coverage Columns in the Main Window Workspace	141
	141
Figure 12-3. Instance Coverage Pane	142
Figure 12-4. Details Pane	142
Figure 12-5. Current Exclusions Pane	143
Figure 12-6. Right-click a Column Heading to Hide or Show Columns	144
Figure 12-7. Coverage Statistics in the Source Window	145
	146
c c c j	147
Figure 12-10. Excluding a File Using Menus in the Workspace	148
	149
	154
Figure 13-2. Second dialog of the Waveform Comparison Wizard	154
	155
Figure 13-4. Comparison objects in the Wave window	156

Figure 13-5. The compare icons	156
Figure 13-6. Compare differences in the List window	157
Figure 13-7. Coverage data saved to a text file	158
Figure 13-8. Displaying Log Files in the Open dialog	159
Figure 13-9. Reloading saved comparison data	159
Figure 14-1. A Dataset in the Main Window Workspace	164
Figure 14-2. Buttons Added to the Main Window Toolbar	166

List of Tables

Table 1-1. Documentation List	13
Table 3-1. The Main Window	34
Table 6-1. Supported Operating Systems for SystemC	64
Table 11-1. Columns in the Profile Window	132
Table 12-1. Coverage Icons in the Source Window	145

Assumptions

We assume that you are familiar with the use of your operating system. You should also be familiar with the window management functions of your graphic interface: OpenWindows, OSF/Motif, CDE, KDE, GNOME, or Microsoft Windows 2000/XP.

We also assume that you have a working knowledge of the language in which your design and/or testbench is written (i.e., VHDL, Verilog, SystemC, etc.). Although ModelSimTM is an excellent tool to use while learning HDL concepts and practices, this document is not written to support that goal.

Where to Find Our Documentation

ModelSim documentation is available from our website at

www.model.com/support

or from the tool by selecting **Help** :

Document	Format	How to get it
Installation & Licensing	PDF	Help > PDF Bookcase
Guide	HTML and PDF	Help > InfoHub
<i>Quick Guide</i> (command and feature quick-reference)	PDF	Help > PDF Bookcase and Help > InfoHub
Tutorial	PDF	Help > PDF Bookcase
	HTML and PDF	Help > InfoHub
User's Manual	PDF	Help > PDF Bookcase
	HTML and PDF	Help > InfoHub
Reference Manual	PDF	Help > PDF Bookcase
	HTML and PDF	Help > InfoHub

Document	Format	How to get it
Foreign Language	PDF	Help > PDF Bookcase
Interface Manual	HTML	Help > InfoHub
Std_DevelopersKit User's Manual	PDF	www.model.com/support/documentation/BOO K/sdk_um.pdf The Standard Developer's Kit is for use with Mentor Graphics QuickHDL.
Command Help	ASCII	type help [command name] at the prompt in the Transcript pane
Error message help	ASCII	type verror <msgnum></msgnum> at the Transcript or shell prompt
Tcl Man Pages (Tcl manual)	HTML	<pre>select Help > Tcl Man Pages, or find contents.htm in \modeltech\docs\tcl_help_html</pre>
Technotes	HTML	available from the support site

Table 1-1. Documentation List

Download a Free PDF Reader With Search

ModelSim PDF documentation requires an Adobe Acrobat Reader for viewing. The Reader is available without cost from Adobe at:

www.adobe.com.

Mentor Graphics Support

Mentor Graphics software support includes software enhancements, technical support, access to comprehensive online services with SupportNet, and the optional On-Site Mentoring service. For details, see:

http://supportnet.mentor.com/about/

If you have questions about this software release, please log in to SupportNet. You may search thousands of technical solutions, view documentation, or open a Service Request online at:

http://supportnet.mentor.com/

If your site is under current support and you do not have a SupportNet login, you may easily register for SupportNet by filling out the short form at:

http://supportnet.mentor.com/user/register.cfm

All customer support contact information can be found on our web site at:

http://supportnet.mentor.com/contacts/supportcenters/

Additional Support

Online and email technical support options, maintenance renewal, and links to international support contacts:

http://www.model.com/support

Access to the most current version of ModelSim:

http://www.model.com/downloads/

Place your name on our list for email notification of news and updates:

http://www.model.com/resources/resources_newsletter.asp

Before you Begin

Preparation for some of the lessons leaves certain details up to you. You will decide the best way to create directories, copy files, and execute programs within your operating system. (When you are operating the simulator within ModelSim's GUI, the interface is consistent for all platforms.)

Examples show Windows path separators - use separators appropriate for your operating system when trying the examples.

Example Designs

ModelSim comes with Verilog and VHDL versions of the designs used in these lessons. This allows you to do the tutorial regardless of which license type you have. Though we have tried to minimize the differences between the Verilog and VHDL versions, we could not do so in all cases. In cases where the designs differ (e.g., line numbers or syntax), you will find language-specific instructions. Follow the instructions that are appropriate for the language you use.

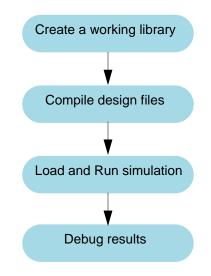
Introduction

ModelSim is a verification and simulation tool for VHDL, Verilog, SystemVerilog, SystemC, and mixed-language designs.

This lesson provides a brief conceptual overview of the ModelSim simulation environment. It is divided into five topics, which you will learn more about in subsequent lessons.

- Design Optimizations Refer to the Optimizing Designs with vopt chapter in the User's Manual.
- Basic simulation flow Refer to *Chapter 3 Basic Simulation*.
- Project flow Refer to *Chapter 4 Projects*.
- Multiple library flow Refer to *Chapter 5 Working With Multiple Libraries*.
- Debugging tools Refer to remaining lessons.

Design Optimizations


Before discussing the basic simulation flow, it is important to understand design optimization. By default, ModelSim optimizations are automatically performed on all designs. These optimizations are designed to maximize simulator performance, yielding improvements up to 10X, in some Verilog designs, over non-optimized runs.

Global optimizations, however, may have an impact on the visibility of the design simulation results you can view – certain signals and processes may not be visible. If these signals and processes are important for debugging the design, it may be necessary to customize the simulation by removing optimizations from specific modules.

It is important, therefore, to make an informed decision as to how best to apply optimizations to your design. The tool that performs global optimizations in ModelSim is called vopt. Please refer to the Optimizing Designs with vopt chapter in the ModelSim User's Manual for a complete discussion of optimization trade-offs and customizations. For details on command syntax and usage, please refer to vopt in the Reference Manual.

Basic Simulation Flow

The following diagram shows the basic steps for simulating a design in ModelSim.

• Creating the Working Library

In ModelSim, all designs are compiled into a library. You typically start a new simulation in ModelSim by creating a working library called "work". "Work" is the library name used by the compiler as the default destination for compiled design units.

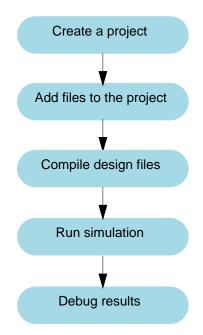
• Compiling Your Design

After creating the working library, you compile your design units into it. The ModelSim library format is compatible across all supported platforms. You can simulate your design on any platform without having to recompile your design.

• Loading the Simulator with Your Design and Running the Simulation

With the design compiled, you load the simulator with your design by invoking the simulator on a top-level module (Verilog) or a configuration or entity/architecture pair (VHDL).

Assuming the design loads successfully, the simulation time is set to zero, and you enter a run command to begin simulation.


• Debugging Your Results

If you don't get the results you expect, you can use ModelSim's robust debugging environment to track down the cause of the problem.

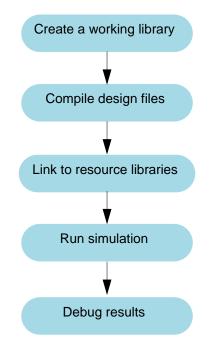
Project Flow

A project is a collection mechanism for an HDL design under specification or test. Even though you don't have to use projects in ModelSim, they may ease interaction with the tool and are useful for organizing files and specifying simulation settings.

The following diagram shows the basic steps for simulating a design within a ModelSim project.

Figure 2-2. Project Flow

As you can see, the flow is similar to the basic simulation flow. However, there are two important differences:


- You do not have to create a working library in the project flow; it is done for you automatically.
- Projects are persistent. In other words, they will open every time you invoke ModelSim unless you specifically close them.

Multiple Library Flow

ModelSim uses libraries in two ways: 1) as a local working library that contains the compiled version of your design; 2) as a resource library. The contents of your working library will change as you update your design and recompile. A resource library is typically static and serves as a parts source for your design. You can create your own resource libraries, or they may be supplied by another design team or a third party (e.g., a silicon vendor).

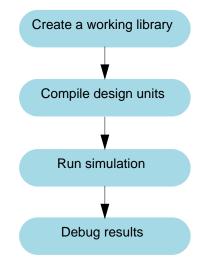
You specify which resource libraries will be used when the design is compiled, and there are rules to specify in which order they are searched. A common example of using both a working library and a resource library is one where your gate-level design and testbench are compiled into the working library, and the design references gate-level models in a separate resource library.

The diagram below shows the basic steps for simulating with multiple libraries.

Figure 2-3. Multiple Library Flow

You can also link to resource libraries from within a project. If you are using a project, you would replace the first step above with these two steps: create the project and add the testbench to the project.

Debugging Tools


ModelSim offers numerous tools for debugging and analyzing your design. Several of these tools are covered in subsequent lessons, including:

- Using projects
- Working with multiple libraries
- Simulating with SystemC
- Setting breakpoints and stepping through the source code
- Viewing waveforms and measuring time
- Exploring the "physical" connectivity of your design
- Viewing and initializing memories
- Creating stimulus with the Waveform Editor

- Analyzing simulation performance
- Testing code coverage
- Comparing waveforms
- Automating simulation

Introduction

In this lesson you will go step-by-step through the basic simulation flow:

Figure 3-1. Basic Simulation Flow - Simulation Lab

Design Files for this Lesson

The sample design for this lesson is a simple 8-bit, binary up-counter with an associated testbench. The pathnames are as follows:

Verilog – <*install_dir*>/*examples*/*tutorials*/*verilog*/*basicSimulation*/*counter*.*v* and tcounter.*v*

VHDL – <*install_dir*>/*examples/tutorials/vhdl/basicSimulation/counter.vhd* and *tcounter.vhd*

This lesson uses the Verilog files *counter.v* and *tcounter.v*. If you have a VHDL license, use *counter.vhd* and *tcounter.vhd* instead. Or, if you have a mixed license, feel free to use the Verilog testbench with the VHDL counter or vice versa.

Related Reading

User's Manual Chapters: Design Libraries, Verilog and SystemVerilog Simulation, and VHDL Simulation.

Reference Manual commands: vlib, vmap, vlog, vcom, vopt, view, and run.

Create the Working Design Library

Before you can simulate a design, you must first create a library and compile the source code into that library.

1. Create a new directory and copy the design files for this lesson into it.

Start by creating a new directory for this exercise (in case other users will be working with these lessons).

Verilog: Copy *counter.v* and *tcounter.v* files from /<*install_dir>/examples/tutorials/verilog/basicSimulation* to the new directory.

VHDL: Copy *counter.vhd* and *tcounter.vhd* files from /<*install_dir>/examples/tutorials/vhdl/basicSimulation* to the new directory.

- 2. Start ModelSim *if necessary*.
 - a. Type vsim at a UNIX shell prompt or use the ModelSim icon in Windows.

Upon opening ModelSim for the first time, you will see the Welcome to ModelSim dialog. Click **Close**.

- b. Select **File > Change Directory** and change to the directory you created in step 1.
- 3. Create the working library.
 - a. Select **File > New > Library**.

This opens a dialog where you specify physical and logical names for the library (Figure 3-2). You can create a new library or map to an existing library. We'll be doing the former.

Create a New Library 🛛 🛛
Create
I a new library and a logical mapping to it
 a map to an existing library
Library Name:
work
Library Physical Name:
work
OK Cancel

Figure 3-2. The Create a New Library Dialog

b. Type work in the Library Name field (if it isn't already entered automatically).

c. Click OK.

ModelSim creates a directory called *work* and writes a specially-formatted file named *_info* into that directory. The *_info* file must remain in the directory to distinguish it as a ModelSim library. Do not edit the folder contents from your operating system; all changes should be made from within ModelSim.

ModelSim also adds the library to the list in the Workspace (Figure 3-3) and records the library mapping for future reference in the ModelSim initialization file (*modelsim.ini*).

Workspace 💳 💳	
▼ Name	Туре 🗅
	Library
	Library
E - J ieee	Library
🕀 – 📶 modelsim_lib	Library
⊞ ∭i std	Library
⊕ _∭ std_developerskit	Library
🕀 🕂 🙀 synopsys	Library
	· · ·
Library	

Figure 3-3. work Library in the Workspace

When you pressed OK in step 3c above, the following was printed to the Transcript:

vlib work vmap work work

These two lines are the command-line equivalents of the menu selections you made. Many command-line equivalents will echo their menu-driven functions in this fashion.

Compile the Design

With the working library created, you are ready to compile your source files.

You can compile by using the menus and dialogs of the graphic interface, as in the Verilog example below, or by entering a command at the ModelSim> prompt.

- 1. Compile *counter.v* and *tcounter.v*.
 - a. Select **Compile > Compile**. This opens the Compile Source Files dialog (Figure 3-4).

If the Compile menu option is not available, you probably have a project open. If so, close the project by making the Workspace pane active and selecting **File > Close** from the menus.

- b. Select both *counter.v* and *tcounter.v* modules from the Compile Source Files dialog and click **Compile**. The files are compiled into the *work* library.
- c. When compile is finished, click **Done**.

Compile Source Files	? ×
Library: work	
🛛 Look in: 🗀 basicSimulation 🛛 🔽 🖛 🛍 🖆	* 🎫 -
in work counter.v tcounter.v	
File name: "tcounter.v" "counter.v"	Compile
Files of type: HDL Files (*.v;*.vl;*.vhd;*.vhd;*.vhd;*.vho;*.hdl;*.v	Done
Compile selected files together Default Options	Edit Source

Figure 3-4. Compile Source Files Dialog

- 2. View the compiled design units.
 - a. On the Library tab, click the '+' icon next to the *work* library and you will see two design units (Figure 3-5). You can also see their types (Modules, Entities, etc.) and the path to the underlying source files (scroll to the right if necessary).

Figure 3-5. Verilog Modules Compiled into work Library

Workspace		Transcript	<u>= + 4</u>
▼ Name	Туре 🔟	# Compiling module test_counter	_ <u>-</u>
work work work work work work work work work test_counter wital2000 work wo	Library Module Module Library Library Library	# # Top level modules: # test_counter vlog -work work {C:/6.0 Tutorial/examples/counter.v} # Compiling module counter # # Top level modules:	
⊕– ∭ i std	Library	= # counter	
Library	▶		_

Load the Design

- 1. Load the *test_counter* module into the simulator.
 - a. Enter the following command at the ModelSim> prompt in the Transcript window:

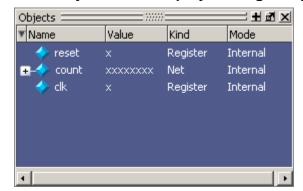
```
vsim -voptargs="+acc" test_counter
```

The -voptargs="+acc" argument for the vsim command provides visibility into the design for debugging purposes.

Note.

By default, ModelSim optimizations are performed on all designs (see Optimizing Designs with vopt).

When the design is loaded, you will see a new tab in the Workspace named *sim* that displays the hierarchical structure of the design (Figure 3-6). You can navigate within the hierarchy by clicking on any line with a '+' (expand) or '-' (contract) icon. You will also see a tab named *Files* that displays all files included in the design.


Figure 3-6. Workspace sim Tab Displays Design Hierarchy

Workspace 💳		;;;;;;;			
Instance	Δ	Design unit	:	Design (unit type
🖃 🗾 test_co	unter	test_count	er(fast)	Module	
📥 🗾 dut		counter(fa	st)	Module	
L <u>I</u> i	ncrement	counter(fa	st)	Function	n
▲ [Þ
Library	🛺 sim	📓 Files	📑 Me	mories	<u></u> «»

- 2. View design objects in the Objects pane.
 - a. Open the View menu and select Objects. The command line equivalent is:

view objects

The Objects pane (Figure 3-7) shows the names and current values of data objects in the current region (selected in the Workspace). Data objects include signals, nets, registers, constants and variables not declared in a process, generics, parameters, and member data variables of a SystemC module.

Figure 3-7. Object Pane Displays Design Objects

You may open other windows and panes with the **View** menu or with the **view** command. See Navigating the Interface.

Run the Simulation

Now you will open the Wave window, add signals to it, then run the simulation.

- 1. Open the Wave debugging window.
 - a. Enter view wave at the command line.

You can also use the **View > Wave** menu selection to open a Wave window.

The Wave window is one of several windows available for debugging. To see a list of the other debugging windows, select the **View** menu. You may need to move or resize the windows to your liking. Window panes within the Main window can be zoomed to occupy the entire Main window or undocked to stand alone. For details, see Navigating the Interface.

- 2. Add signals to the Wave window.
 - a. In the Workspace pane, select the **sim** tab.
 - b. Right-click *test_counter* to open a popup context menu.
 - c. Select Add > Add All Signals to Wave (Figure 3-8).

All signals in the design are added to the Wave window.

Workspace 💳			
Instance	🛆 Design unit	Design unit type	Visibility
🖃 🧾 test_counte		Module	+acc= <full></full>
庄 🗾 dut	View Declaration	Module	+acc= <full></full>
	View Instantiation		
	Add 🕨 🕨	Add All Signals	to Wave
	Create Wave	Add to Wave	
	Сору	Add to Dataflo Add to List	W
	Find	Add to Watch	
	Expand Selected Collapse Selected	Log	

Figure 3-8. Using the Popup Menu to Add Signals to Wave Window

- 3. Run the simulation.
 - a. Click the Run icon in the Main or Wave window toolbar.

- The simulation runs for 100 ns (the default simulation length) and waves are drawn in the Wave window.
- b. Enter **run 500** at the VSIM> prompt in the Main window.

The simulation advances another 500 ns for a total of 600 ns (Figure 3-9).

😦 wave - default 🗧 🖬 🖬				
Messages				
🗇 /test_counter/clk	0			
/test_counter/reset	0			
🖅 🥠 /test_counter/count	00011110	000000000000000000000000000000000000000		
🖅	00011110	000000000000000000000000000000000000000		
/test_counter/dut/clk	St0			
🔶 /test_counter/dut/reset	St0			
+	00011110	(00000000000000000000000000000000000000		
🖅	00011101	(00000000000000000000000000000000000000		
🖅 🍫 /test_counter/dut/increment/i	0010	000000000000000000000000000000000000000		
/test_counter/dut/increment/carry	0			
Now	600 ns	500		
Cursor 1	0 ns	0 ns		
R wave		<u>«</u>		

Figure 3-9. Waves Drawn in Wave Window

c. Click the Run -All icon on the Main or Wave window toolbar.

Ξ

The simulation continues running until you execute a break command or it hits a statement in your code (e.g., a Verilog \$stop statement) that halts the simulation.

d. Click the Break icon.

The simulation stops running.

Set Breakpoints and Step through the Source

Next you will take a brief look at one interactive debugging feature of the ModelSim environment. You will set a breakpoint in the Source window, run the simulation, and then step through the design under test. Breakpoints can be set only on lines with red line numbers.

- 1. Open *counter.v* in the Source window.
 - a. Select the Files tab in the Main window Workspace.
 - b. Click the + sign next to the *sim* filename to see the contents of *vsim.wlf*.
 - c. Double-click *counter.v* (or *counter.vhd* if you are simulating the VHDL files) to open it in the Source window.
- 2. Set a breakpoint on line 36 of *counter.v* (or, line 39 of *counter.vhd* for VHDL).
 - a. Scroll to line 36 and click in the BP (breakpoint) column next to the line number.

A red ball appears in the BP column at line number 36 (Figure 3-10), indicating that a breakpoint has been set.

Figure 3-10. Setting Breakpoint in Source Window

<mark>h</mark> i⊂:/	(Tutorial/e>	kamples/tutorials/verilog/basicSimulation/counter.v	+ • ×
BP	ln #		
	29	<pre>increment[i] = val[i] ^ carry;</pre>	
	30	carry = val[i] & carry;	
	31	end	
	32	end	
	33	endfunction	
	34		
	35	always 🛛 (posedge clk or posedge reset)	
9	3.6	if (reset)	
	37	count = #tpd_reset_to_count 8'h00;	
	38	else	
	39	<pre>count <= #tpd_clk_to_count increment(count);</pre>	
	40		-
			▶
	wave h] counter.v	< >

- 3. Disable, enable, and delete the breakpoint.
 - a. Click the red ball to disable the breakpoint. It will become a black ball.

- b. Click the black ball again to re-enable the breakpoint. It will become a red ball.
- c. Click the red ball with your right mouse button and select **Remove Breakpoint 36**.
- d. Click in the BP column next to line number 36 again to re-create the breakpoint.
- 4. Restart the simulation.
 - a. Click the Restart icon to reload the design elements and reset the simulation time to zero.

≣₹

The Restart dialog that appears gives you options on what to retain during the restart (Figure 3-11).

Figure 3-11. Setting Restart Functions

- b. Click the **Restart** button in the Restart dialog.
- c. Click the Run -All icon.

The simulation runs until the breakpoint is hit. When the simulation hits the breakpoint, it stops running, highlights the line with a blue arrow in the Source view (Figure 3-12), and issues a Break message in the Transcript pane.

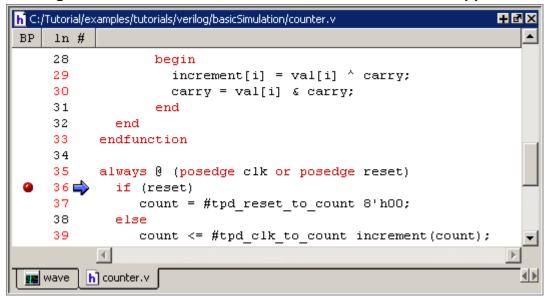


Figure 3-12. Blue Arrow Indicates Where Simulation Stopped.

When a breakpoint is reached, typically you want to know one or more signal values. You have several options for checking values:

• look at the values shown in the Objects window (Figure 3-13).

Figure 3-13. Values Shown in Objects Window

Objects				Z X
▼ Name	Value	Kind	Mode	<u>^</u>
🔷 tpd_reset_to_count	3	Parameter	Internal	
🔶 tpd_clk_to_count	2	Parameter	Internal	
⊕	*****	Reg	Out	
🔶 clk	StO	Net	In	
🔶 reset	St1	Net	In	
				-

- set your mouse pointer over a variable in the Source window and a yellow box will appear with the variable name and the value of that variable at the time of the selected cursor in the Wave window
- highlight a signal, parameter, or variable in the Source window, right-click it, and select **Examine** from the pop-up menu to display the variable and its current value in a Source Examine window (Figure 3-14)

{+}

Figure 3-14. Parameter Name and Value in Source Examine Window

Source Examine	×
/test_counter/dut/tpd_reset_to_count	
3	
OK	

- use the **examine** command at the VSIM> prompt to output a variable value to the Main window Transcript (i.e., examine count)
- 5. Try out the step commands.
 - a. Click the Step icon on the Main window toolbar.

This single-steps the debugger.

Experiment on your own. Set and clear breakpoints and use the Step, Step Over, and

Navigating the Interface

The Main window is composed of a number of "panes" and sub-windows that display various types of information about your design, simulation, or debugging session. You can also access other tools from the Main window that display in stand-alone windows (e.g., the Dataflow window).

Continue Run commands until you feel comfortable with their operation.

File Edit View Format Compile Simu	late Add Tools Window Help		
📙 🗅 🚘 🖶 🍈 🕴 👢 🕒 😩 🗠 🗠	: # # # 4 _} 🦄 1 🖅 🔌 # 🖓 🕺 📐 🖳 & &		
100 ns 븆 💷 🚉 🚉	경 🏵 🎘 🛐 🛐 🚺 Contains: 🛛 🖉		
Workspace Image: Comparison of the sector of the secto	Objects Image: Similar S		
Transcript Transcript Transcript			
Now: 600 ns Delta: 2	sim:/test_counter		

The following table describes some of the key elements of the Main window.

Table	3-1.	The	Main	Window
-------	------	-----	------	--------

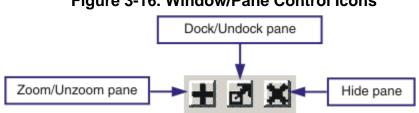
Window/pane	Description
Workspace	This pane comprises multiple tabs that contain various sorts of information about the current project or design. Once a design is loaded, additional tabs will appear. Refer to the section Workspace in the User's Manual for more information.
Transcript	The Transcript pane provides a command-line interface and serves as an activity log including status and error messages. Refer to the section Transcript Window in the User's Manual for more information.

Window/pane	Description
MDI frame	The Multiple Document Interface (MDI) frame holds windows for which there can be multiple instances. These include Source editor windows, Wave windows, and Memory content windows. Refer to the section Multiple Document Interface (MDI) Frame in the User's Manual for more information.

Table 3-1. The Main Window

Here are a few important points to keep in mind about the ModelSim interface:

Windows/panes can be resized, moved, zoomed, undocked, etc. and the changes are • persistent.


You have a number of options for re-sizing, re-positioning, undocking/redocking, and generally modifying the physical characteristics of windows and panes. When you exit ModelSim, the current layout is saved so that it appears the same the next time you invoke the tool. Refer to the Main Window section in the User's Manual for more information.

Menus are context sensitive.

The menu items that are available and how certain menu items behave depend on which pane or window is active. For example, if the *sim* tab in the Workspace is active and you choose Edit from the menu bar, the Clear command is disabled. However, if you click in the Transcript pane and choose Edit, the Clear command is enabled. The active pane is denoted by a blue title bar.

Let us try a few things.

- 1. Zoom and undock panes.
 - a. Click the Zoom/Unzoom icon in the upper right corner of the Workspace pane (Figure 3-16).

Figure 3-16. Window/Pane Control Icons

The pane fills the entire Main window (Figure 3-17).

File Edit View Format	Compile Sim	ulate Add	Tools Window	Help			
] 🗋 🚅 🖶 🏐 👗	🖻 🏙 🎦 :	``	' 🗣 🚽 🏶 🎬	🔉 🖹 📗	<u> </u>	. 🔍 🔍	🍭 🚺 🌫 🌋
📙 🚹 📑 🗍 100 ns 불		ft) Ot 🕽	S 🚹 🚹		🎽 🛬 🛃		
Workspace =====							= = × ×
▼ Instance	Design unit	Design unit t	ype Visibility				
🖃 📕 test_counter	test_counter	Module	+acc= <full></full>				
🕁 🗾 dut	counter	Module	+acc= <full></full>				
	test_counter	Process					
	test_counter	Process					
	test_counter	Process					
- #INITIAL#23	test_counter	Process					
III Loo #INITIAL#30	test_counter	Process					
Library 🌄 sim	📓 Files 🛛 😭	Memories					< >
Now: 600 ns Delta:	2		sim:/test_cour	nter			

Figure 3-17. zooming in on Workspace Pane

- b. Click the Unzoom icon in the Workspace.
- c. Click the Undock icon in the upper right corner of the Transcript pane.

The Transcript becomes a stand-alone window.

- d. Click the Dock icon on the Transcript.
- e. Click the Hide pane icon in the Workspace.
- f. Select **View > Workspace** from the menus to re-open the Workspace.
- 2. Move and resize panes.
 - a. Hover your mouse pointer in the center of the Transcript title bar, where the two parallel lines are interrupted by 3 lines of small dots. This is the handle for the pane. When the cursor is over the pane handle it becomes a four-headed arrow.
 - b. Click and drag the Transcript up and to the right until you see a gray outline on the right-hand side of the MDI frame.

When you let go of the mouse button, the Transcript is moved and the MDI frame and Workspace panes shift to the left (Figure 3-18).

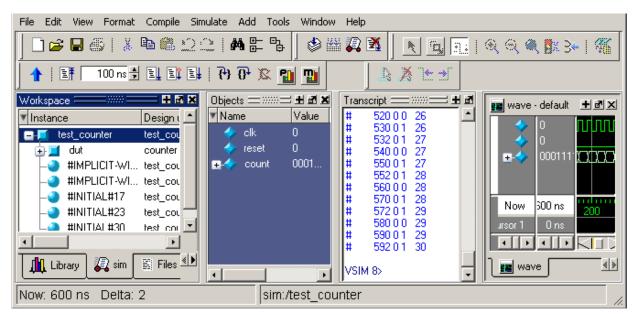


Figure 3-18. Panes Rearranged in Main Window

c. Select **Layout > Reset**.

i

The layout returns to its original setting.

Tip: Moving panes can get confusing, and you may not always obtain the results you expect. Practice moving a pane around, watching the gray outline to see what happens when you drop it in various places. Your layout will be saved when you exit ModelSim and will reappear when you next open ModelSim. (It's a good idea to close all panes in the MDI frame at the end of each lesson in this tutorial so only files relevant to each lesson will be displayed.)

As you practice, notice that the MDI frame cannot be moved in the same manner as the panes. It does not have a handle in its header bar.

Selecting **Layout > Reset** is the easiest way to rectify an undesired layout.

- d. Hover your mouse pointer on the border between two panes so it becomes a doubleheaded arrow. ↔
- e. Click-and-drag left and right or up and down to resize the pane.
- f. Select **Layout > Reset**.
- 3. Observe context sensitivity of menu commands.
 - a. Click anywhere in the Workspace.
 - b. Select the Edit menu and notice that the Clear command is disabled.

c. Click in the Transcript and select **Edit > Clear**.

This command applies to the Transcript pane but not the Workspace pane.

- d. Click on a design object in the sim tab of the Workspace and select **File > Open**.
- e. Notice that the Open dialog filters to show Log files (*.wlf).
- f. Now click on a filename in the Files tab of the Workspace and select File > Open.
 Notice that the Open dialog filters to show HDL file types instead.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

- 1. Select **Simulate > End Simulation**.
- 2. Click **Yes** when prompted to confirm that you wish to quit simulating.

Introduction

In this lesson you will practice creating a project.

At a minimum, projects contain a work library and a session state that is stored in a *.mpf* file. A project may also consist of:

- HDL source files or references to source files
- other files such as READMEs or other project documentation
- local libraries
- references to global libraries

Design Files for this Lesson

The sample design for this lesson is a simple 8-bit, binary up-counter with an associated testbench. The pathnames are as follows:

Verilog – *<install_dir>/examples/tutorials/verilog/projects/counter.v* and tcounter.v

VHDL - <install_dir>/examples/tutorials/vhdl/projects/counter.vhd and tcounter.vhd

This lesson uses the Verilog files *tcounter.v* and *counter.v*. If you have a VHDL license, use *tcounter.vhd* and *counter.vhd* instead.

Related Reading

User's Manual Chapter: Projects.

Create a New Project

1. Create a new directory and copy the design files for this lesson into it.

Start by creating a new directory for this exercise (in case other users will be working with these lessons).

Verilog: Copy *counter.v* and *tcounter.v* files from /<*install_dir>/examples/tutorials/verilog/projects* to the new directory.

VHDL: Copy *counter.vhd* and *tcounter.vhd* files from /<*install_dir>/examples/tutorials/vhdl/projects* to the new directory.

- 2. If you just finished the previous lesson, ModelSim should already be running. If not, start ModelSim.
 - a. Type **vsim** at a UNIX shell prompt or use the ModelSim icon in Windows.
 - b. Select **File > Change Directory** and change to the directory you created in step 1.
- 3. Create a new project.
 - a. Select **File > New > Project** (Main window) from the menu bar.

This opens the Create Project dialog where you can enter a Project Name, Project Location (i.e., directory), and Default Library Name (Figure 4-1). You can also reference library settings from a selected .ini file or copy them directly into the project. The default library is where compiled design units will reside.

- b. Type test in the Project Name field.
- c. Click the **Browse** button for the Project Location field to select a directory where the project file will be stored.
- d. Leave the Default Library Name set to work.
- e. Click OK.

Create Project	×
Project Name	
test	
Project Location	
C:/Tutorial/examples/projects	Browse
Default Library Name work	
Copy Settings From	
/modelsim.ini Brow	se
Copy Library Mappings C Reference Library	Mappings
OK	Cancel

Figure 4-1. Create Project Dialog - Project Lab

Add Objects to the Project

Once you click OK to accept the new project settings, you will see a blank Project tab in the Workspace area of the Main window and the Add items to the Project dialog will appear (Figure 4-2). From this dialog you can create a new design file, add an existing file, add a folder for organization purposes, or create a simulation configuration (discussed below).

<u>*</u> \	
Create New File	Add Existing File
Create Simulation	Create New Folder

Figure 4-2. Adding New Items to a Project

- 1. Add two existing files.
 - a. Click Add Existing File.

This opens the Add file to Project dialog (Figure 4-3). This dialog lets you browse to find files, specify the file type, specify a folder to which the file will be added, and identify whether to leave the file in its current location or to copy it to the project directory.

Add file to Project	×
File Name	
counter.v tcounter.v	Browse
Add file as type Folder	les 🗾
 Reference from current location Copy to 	project directory
	OK Cancel

Figure 4-3. Add file to Project Dialog

- b. Click the **Browse** button for the File Name field. This opens the "Select files to add to project" dialog and displays the contents of the current directory.
- c. Verilog: Select *counter.v* and *tcounter.v* and click Open. VHDL: Select *counter.vhd* and *tcounter.vhd* and click Open.

This closes the "Select files to add to project" dialog and displays the selected files in the "Add file to Project" dialog (Figure 4-3).

d. Click **OK** to add the files to the project.

e. Click **Close** to dismiss the Add items to the Project dialog.

You should now see two files listed in the Project tab of the Workspace pane (Figure 4-4). Question mark icons (?) in the Status column indicate that the file has not been compiled or that the source file has changed since the last successful compile. The other columns identify file type (e.g., Verilog or VHDL), compilation order, and modified date.

Figure 4-4. Newly Added Project Files Display a "?" for Status

Workspace 💳				+ a ×
▼ Name	Status	Туре	Order	Modified
Counter.v	?	Verilog	1	10/26/06 08:47:58 PM
tcounter.v	?	Verilog	0	10/26/06 08:47:58 PM
Project 🏨	Library	J		<u>«</u> »

Changing Compile Order (VHDL)

By default ModelSim performs default binding of VHDL designs when you load the design with vsim. However, you can elect to perform default binding at compile time. (For details, refer to the section Default Binding in the User's Manual.) If you elect to do default binding at compile, then the compile order is important. Follow these steps to change compilation order within a project.

- 1. Change the compile order.
 - a. Select **Compile > Compile Order**.

This opens the Compile Order dialog box (Figure 4-5).

MCom	pile Order	×	
Cu	rrent Order		
	The second second	<u> </u>	
		*	move up / down buttons
4			
	Auto Generate	OK Cancel	

Figure 4-5. Compile Order Dialog

b. Click the Auto Generate button.

ModelSim "determines" the compile order by making multiple passes over the files. It starts compiling from the top; if a file fails to compile due to dependencies, it moves that file to the bottom and then recompiles it after compiling the rest of the files. It continues in this manner until all files compile successfully or until a file(s) can't be compiled for reasons other than dependency.

Alternatively, you can select a file and use the Move Up and Move Down buttons to put the files in the correct order.

c. Click **OK** to close the Compile Order dialog.

Compile the Design

- 1. Compile the files.
 - a. Right-click anywhere in the Project tab and select **Compile > Compile All** from the pop-up menu.

ModelSim compiles both files and changes the symbol in the Status column to a green check mark. A check mark means the compile succeeded. If compile fails, the symbol will be a red 'X', and you will see an error message in the Transcript pane.

- 2. View the design units.
 - a. Click the Library tab in the workspace (Figure 4-6).
 - b. Click the "+" icon next to the *work* library.

You should see two compiled design units, their types (modules in this case), and the path to the underlying source files.

Name	Type 🛛 🛆	Path	-
⊒- <mark>∭1</mark> work I	Library	C:/Tutorial/examples/tu	
- counter	Module	C:/Tutorial/examples/tu	
L test_counter I	Module	C:/Tutorial/examples/tu	
⊕_ <mark>∭_</mark> sv_std	Library	\$MODEL_TECH//sv_	
⊕_∭_ vital2000 I	Library	\$MODEL_TECH//vita	
⊕_<mark>∭</mark>ieee I	Library	\$MODEL_TECH//iee	
⊕,∭ modelsim_lib I	Library	\$MODEL_TECH//mo	
⊕_<mark>∭</mark>_std l	Library	\$MODEL_TECH//std	
⊕∰ std_developerskit I	Library	\$MODEL_TECH//std	
+ 👖 synopsys	Library	\$MODEL_TECH//syr	
∓ 🙀 verilog I	Library	\$MODEL_TECH//ver	
		Þ	-

Figure 4-6. Library Tab with Expanded Library

Load the Design

- 1. Load the *test_counter* design unit.
 - a. Enter the following command at the ModelSim> prompt in the Transcript pane.

```
vsim -voptargs="+acc" test_counter
```

The -voptargs="+acc" argument for the vsim command provides visibility into the design for debugging purposes.

Note _

By default, ModelSim optimizations are performed on all designs (see Optimizing Designs with vopt).

You should see 3 new tabs in the Main window Workspace. The *sim* tab displays the structure of the *test_counter* design unit (Figure 4-7). The *Files* tab contains information about the underlying source files. The *Memories* tab lists all memories in the design.

Workspace 💳			
🛙 Instance	Design unit	Design unit type	Visibility
🖃 🗾 test_counter	test_counter	Module	+acc= <full></full>
🕁 🗾 dut	counter	Module	+acc= <full></full>
- 4 #IMPLICIT-WIRE(rs.	test_counter	Process	
- AMPLICIT-WIRE(cl.	test_counter	Process	
	test_counter	Process	
	test_counter	Process	
Loo #INITIAL#31	test_counter	Process	
🛗 Project 🛛 🏨 Library	🛺 sim 🛛 📓 F	files 🛛 📑 Memorie	es

Figure 4-7. Structure Tab for a Loaded Design

At this point you would typically run the simulation and analyze or debug your design like you did in the previous lesson. For now, you'll continue working with the project. However, first you need to end the simulation that started when you loaded *test_counter*.

- 2. End the simulation.
 - a. Select **Simulate > End Simulation**.
 - b. Click Yes.

Organizing Projects with Folders

If you have a lot of files to add to a project, you may want to organize them in folders. You can create folders either before or after adding your files. If you create a folder before adding files, you can specify in which folder you want a file placed at the time you add the file (see Folder field in Figure 4-3). If you create a folder after adding files, you edit the file properties to move it to that folder.

Add Folders

As shown previously in Figure 4-2, the Add items to the Project dialog has an option for adding folders. If you have already closed that dialog, you can use a menu command to add a folder.

- 1. Add a new folder.
 - a. Right-click inside the Projects tab of the Workspace and select **Add to Project** > **Folder**.
 - b. Type **Design Files** in the **Folder Name** field (Figure 4-8).

Add Folder	×
Folder Name	
Design Files	
Folder Location	
Top Level	
	OK Cancel

Figure 4-8. Adding New Folder to Project

- c. Click OK.
- d. Select the Project tab to see the new folder (Figure 4-9).

Figure 4-9. A Folder Within a Project

Workspace 💳				H 8 X
▼ Name	Status	Туре	Order	Modified
counter.v	√	Verilog	1	06/03/04 07:36:00 PM
tcounter.v	1	Verilog	0	06/03/04 07:36:26 PM
📄 Design Files		Folder		
Project Library				

- 2. Add a sub-folder.
 - a. Right-click anywhere in the Project tab and select **Add to Project > Folder**.
 - b. Type **HDL** in the **Folder Name** field (Figure 4-10).

Figure 4-10. Creating Subfolder

Add Folder	×
Folder Name	
HDL	
Folder Location	
Design Files	
Top Level Design Files	
Design Files	

- c. Click the Folder Location drop-down arrow and select Design Files.
- d. Click OK.

A '+' icon appears next to the Design Files folder in the Project tab (Figure 4-11).

Workspace ==========			: # # X
▼ Name	Status	Туре	Order
Counter.v	√	Verilog	1
tcounter.v	1	Verilog	0
🖃 🧰 Design Files		Folder	
HDL		Folder	
•			Þ
🕅 Project 🚮 Librar	y J		< >

Figure 4-11. A folder with a Sub-folder

e. Click the '+' icon to see the *HDL* sub-folder.

Moving Files to Folders

If you don't place files into a folder when you first add the files to the project, you can move them into a folder using the properties dialog.

- 1. Move *tcounter.v* and *counter.v* to the *HDL* folder.
 - a. Select both *counter.v* and *tcounter.v* in the Project tab of the Workspace.
 - b. Right-click either file and select **Properties**.

This opens the Project Compiler Settings dialog (Figure 4-12), which allows you to set a variety of options on your design files.

Figure 4-12. Changing File Location via the Project Compiler Settings Dialog

Project Compiler Settings	×
General Verilog Coverage	<u>«</u> »
General Settings	
🔲 🗖 Do Not Compile. Compile to library: 🛛 work	
Place in Folder: HDL	
File Properties Multiple files selected	
	K Cancel

- c. Click the Place In Folder drop-down arrow and select HDL.
- d. Click OK.

The selected files are moved into the HDL folder. Click the '+' icon next to the HDL folder to see the files.

The files are now marked with a '?' in the Status column because you moved the files. The project no longer knows if the previous compilation is still valid.

Simulation Configurations

A Simulation Configuration associates a design unit(s) and its simulation options. For example, let's say that every time you load *tcounter.v* you want to set the simulator resolution to picoseconds (ps) and enable event order hazard checking. Ordinarily, you would have to specify those options each time you load the design. With a Simulation Configuration, you specify options for a design and then save a "configuration" that associates the design and its options. The configuration is then listed in the Project tab and you can double-click it to load *tcounter.v* along with its options.

- 1. Create a new Simulation Configuration.
 - a. Right-click in the Projects tab and select **Add to Project > Simulation Configuration** from the popup menu.

This opens the Add Simulation Configuration dialog (Figure 4-13). The tabs in this dialog present a myriad of simulation options. You may want to explore the tabs to see what is available. You can consult the ModelSim User's Manual to get a description of each option.

Q Add Simulation Configuration	n		x
Simulation Configuration Name		Place in Folder HDL Add Folder	
Design VHDL Verilog Lib	raries SD	F Others	»
▼ Name	Type 🛛 🖓	Path 🔶	
□- ∭ work	Library	work	
	Optimized		
-M counter	Module	C:/Tutorial/examples/tutorials/verilog/projects	
test_counter	Module	C:/Tutorial/examples/tutorials/verilog/projects	
	Library	\$MODEL_TECH//sv_std	
	Library	\$MODEL_TECH//vital2000	
	Library	\$MODEL_TECH//ieee	
	Library	\$MODEL_TECH//modelsim_lib	
	Lihraru	MODEL TECH/ /std	
Design Unit(s)		Resolution	
work.test_counter			
Optimization			
Enable optimization		Optimization Options	
		Save Cancel	

Figure 4-13. Simulation Configuration Dialog

- b. Type counter in the Simulation Configuration Name field.
- c. Select *HDL* from the **Place in Folder** drop-down.
- d. Click the '+' icon next to the *work* library and select *test_counter*.
- e. Click the **Resolution** drop-down and select *ps*.
- f. Uncheck the Enable optimization selection box.
- g. For Verilog, click the Verilog tab and check Enable hazard checking (-hazards).
- h. Click Save.

The Project tab now shows a Simulation Configuration named *counter* in the HDL folder (Figure 4-14).

Figure 4-14. A Simulation Configuration in the Project Tab

- 2. Load the Simulation Configuration.
 - a. Double-click the *counter* Simulation Configuration in the Project tab.

In the Transcript pane of the Main window, the **vsim** (the ModelSim simulator) invocation shows the **-hazards** and **-t ps** switches (Figure 4-15). These are the command-line equivalents of the options you specified in the Simulate dialog.

Figure 4-15. Transcript Shows Options for Simulation Configurations

	Transcript 🦳					
	# Compile of tcounter.v was successful. # Compile of counter.v was successful. # 2 compiles, 0 failed with no errors.					
	vsim -hazards -t ps work.test_counter # vsim -hazards -t ps work.test_counter					
# Loading work.test_counter # Loading work.counter Comm Line VSIM 5> Switch						
	Project : test Now: 0 ps	Delta: 0				

Lesson Wrap-Up

This concludes this lesson. Before continuing you need to end the current simulation and close the current project.

- 1. Select **Simulate > End Simulation**. Click Yes.
- 2. Select the Project tab in the Main window Workspace.
- 3. Right-click in this tab to open a popup menu and select Close Project.
- 4. Click OK.

If you do not close the project, it will open automatically the next time you start ModelSim.

Introduction

In this lesson you will practice working with multiple libraries. You might have multiple libraries to organize your design, to access IP from a third-party source, or to share common parts between simulations.

You will start the lesson by creating a resource library that contains the *counter* design unit. Next, you will create a project and compile the testbench into it. Finally, you will link to the library containing the counter and then run the simulation.

Design Files for this Lesson

The sample design for this lesson is a simple 8-bit, binary up-counter with an associated testbench. The pathnames are as follows:

Verilog – *<install_dir>/examples/tutorials/verilog/libraries/counter.v* and t*counter.v*

VHDL - <install_dir>/examples/tutorials/vhdl/libraries/counter.vhd and tcounter.vhd

This lesson uses the Verilog files *tcounter.v* and *counter.v* in the examples. If you have a VHDL license, use *tcounter.vhd* and *counter.vhd* instead.

Related Reading

User's Manual Chapter: Design Libraries.

Creating the Resource Library

Before creating the resource library, make sure the *modelsim.ini* in your install directory is "Read Only." This will prevent permanent mapping of resource libraries to the master *modelsim.ini* file. See Permanently Mapping VHDL Resource Libraries.

1. Create a directory for the resource library.

Create a new directory called *resource_library*. Copy *counter.v* from <*install_dir>/examples/tutorials/verilog/libraries* to the new directory.

2. Create a directory for the testbench.

Create a new directory called *testbench* that will hold the testbench and project files. Copy *tcounter.v* from *<install_dir>/examples/tutorials/verilog/libraries* to the new directory.

You are creating two directories in this lesson to mimic the situation where you receive a resource library from a third-party. As noted earlier, we will link to the resource library in the first directory later in the lesson.

3. Start ModelSim and change to the *resource_library* directory.

If you just finished the previous lesson, ModelSim should already be running. If not, start ModelSim.

a. Type vsim at a UNIX shell prompt or use the ModelSim icon in Windows.

If the Welcome to ModelSim dialog appears, click Close.

- b. Select **File > Change Directory** and change to the *resource_library* directory you created in step 1.
- 4. Create the resource library.
 - a. Select **File > New > Library**.
 - b. Type **parts_lib** in the Library Name field (Figure 5-1).

Figure 5-1. Creating New Resource Library

Create a New Library 🛛 🛛
Create
a new library and a logical mapping to it
C a map to an existing library
 a map to an existing library
Library Name:
parts_lit
Library Physical Name:
parts_lib
OK Cancel

The Library Physical Name field is filled out automatically.

Once you click OK, ModelSim creates a directory for the library, lists it in the Library tab of the Workspace, and modifies the *modelsim.ini* file to record this new library for the future.

5. Compile the counter into the resource library.

- a. Click the Compile icon on the Main window toolbar.
- b. Select the *parts_lib* library from the Library list (Figure 5-2).

Compile Sour	ce Files	? ×
Library:	parts_lib	
Look in: 🔀	resource_library 🔽 🖛 🗈 🖸	∱ ⊞-
Darts_lib		
Contorry		
I		
File name:	counter.v	Compile
Files of type:	HDL Files (*.v;*.vl;*.vhd;*.vhdl;*.vho;*.hdl;*.v	Done
	Default Options Edit Sourc	e

Figure 5-2. Compiling into the Resource Library

- c. Double-click *counter.v* to compile it.
- d. Click Done.

You now have a resource library containing a compiled version of the *counter* design unit.

- 6. Change to the *testbench* directory.
 - a. Select **File > Change Directory** and change to the *testbench* directory you created in step 2.

Creating the Project

Now you will create a project that contains *tcounter.v*, the counter's testbench.

- 1. Create the project.
 - a. Select **File > New > Project**.
 - b. Type counter in the Project Name field.

- c. Do not change the Project Location field or the Default Library Name field. (The default library name is *work*.)
- d. Make sure "Copy Library Mappings" is selected. The default *modelsim.ini* file will be used.
- e. Click OK.
- 2. Add the testbench to the project.
 - a. Click Add Existing File in the Add items to the Project dialog.
 - b. Click the **Browse** button and select *tcounter*.*v* in the "Select files to add to project" dialog.
 - c. Click **Open**.
 - d. Click OK.
 - e. Click Close to dismiss the "Add items to the Project" dialog.

The *tcounter*.*v* file is listed in the Project tab of the Main window.

- 3. Compile the testbench.
 - a. Right-click *tcounter.v* and select **Compile > Compile Selected**.

Linking to the Resource Library

To wrap up this part of the lesson, you will link to the *parts_lib* library you created earlier. But first, try simulating the testbench without the link and see what happens.

ModelSim responds differently for Verilog and VHDL in this situation.

Verilog

- 1. Simulate a Verilog design with a missing resource library.
 - a. Enter the following command at the ModelSim> prompt in the Transcript pane.

vsim -voptargs="+acc" test_counter

The -voptargs="+acc" argument for the vsim command provides visibility into the design for debugging purposes.

Note -

By default, ModelSim optimizations are performed on all designs (see Optimizing Designs with vopt).

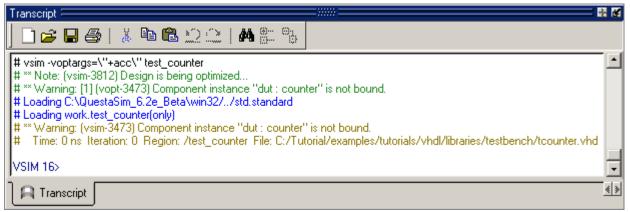
The Main window Transcript reports an error loading the design because the *counter* module is not defined.

VHDL

- 1. Simulate a VHDL design with a missing resource library.
 - a. Enter the following command at the ModelSim> prompt in the Transcript pane.

vsim -voptargs="+acc" test_counter

The -voptargs="+acc" argument for the vsim command provides visibility into the design for debugging purposes.



Note.

By default, ModelSim optimizations are performed on all designs (see Optimizing Designs with vopt).

The Main window Transcript reports a warning (Figure 5-3). When you see a message that contains text like "Warning: (vsim-3473)", you can view more detail by using the **verror** command.

Figure 5-3. VHDL Simulation Warning Reported in Main Window

b. Type verror 3473 at the VSIM> prompt.

The expanded error message tells you that a component ('dut' in this case) has not been explicitly bound and no default binding can be found.

c. Type **quit -sim** to quit the simulation.

The process for linking to a resource library differs between Verilog and VHDL. If you are using Verilog, follow the steps in Linking in Verilog. If you are using VHDL, follow the steps in Linking in VHDL one page later.

Linking in Verilog

Linking in Verilog requires that you specify a "search library" when you invoke the simulator.

1. Specify a search library during simulation.

a. Click the Simulate icon on the Main window toolbar.

- b. Click the '+' icon next to the *work* library and select *test_counter*.
- c. Uncheck the Enable optimization selection box.
- d. Click the Libraries tab.
- e. Click the Add button next to the Search Libraries field and browse to *parts_lib* in the *resource_library* directory you created earlier in the lesson.
- f. Click OK.

The dialog should have *parts_lib* listed in the Search Libraries field (Figure 5-4).

g. Click OK.

The design loads without errors.

Figure 5-4. Specifying a Search Library in the Simulate Dialog

Start Simulation	×
Design VHDL Verilog Libraries SDF Others	<u>.</u>
Search Libraries (-L)	
C:/modeltech/examples/resource_library/parts_lib	Add
	Modify
	Delete
Search Libraries First (-Lf)	
	Add
	Modify
	Delete
	OK Cancel

Linking in VHDL

To link to a resource library in VHDL, you have to create a logical mapping to the physical library and then add LIBRARY and USE statements to the source file.

1. Create a logical mapping to *parts_lib*.

- a. Select **File > New > Library**.
- b. In the Create a New Library dialog, select **a map to an existing library**.
- c. Type **parts_lib** in the Library Name field.
- d. Click Browse to open the Select Library dialog and browse to *parts_lib* in the *resource_library* directory you created earlier in the lesson.
- e. Click OK to select the library and close the Select Library dialog.
- f. The Create a New Library dialog should look similar to the one shown in Figure 5-5. Click **OK** to close the dialog.

Figure 5-5. Mapping to the parts_lib Library

Create a New Library
Create
a new library and a logical mapping to it
a map to an existing library
Library Name:
parts_lib
Library Maps to: C:/6.0 Tutorial/resource_library/parts_
OK Cancel

- 2. Add LIBRARY and USE statements to *tcounter.vhd*.
 - a. In the Library tab of the Main window, click the '+' icon next to the *work* library.
 - b. Right-click *test_counter* in the work library and select **Edit**.
 - c. This opens the file in the Source window.
 - d. Right-click in the Source window and uncheck Read Only.
 - e. Add these two lines to the top of the file:

```
LIBRARY parts_lib;
USE parts_lib.ALL;
```

The testbench source code should now look similar to that shown in Figure 5-6.

f. Select File > Save.


```
H C:/modeltech/examples/testbench/tcounter.vhd *
                                                            + 🗗 🗙
 ln #
  3
  4
        -- All Rights Reserved.
  5
        _ _
  6
        -- THIS WORK CONTAINS TRADE SECRET AND PROPRIE
  7
        -- MENTOR GRAPHICS CORPORATION OR ITS LICENSOR
  8
        _ _
  9
 10
       LIBRARY parts lib;
        USE parts_lib.ALL;
 11
 12
 13
       entity test counter is
 14
             PORT ( count : BUFFER bit vector (8 downto
       4
 H tcounter.vhd *
```

- 3. Recompile and simulate.
 - a. In the Project tab of the Workspace, right-click *tcounter*. *vhd* and select **Compile** > **Compile Selected**.
 - b. Enter the following command at the ModelSim> prompt in the Transcript pane.

vsim -voptargs="+acc" test_counter

c. The design loads without errors.

Permanently Mapping VHDL Resource Libraries

If you reference particular VHDL resource libraries in every VHDL project or simulation, you may want to permanently map the libraries. Doing this requires that you edit the master *modelsim.ini* file in the installation directory. Though you won't actually practice it in this tutorial, here are the steps for editing the file:

- 1. Locate the *modelsim.ini* file in the ModelSim installation directory (*<install_dir>/modeltech/modelsim.ini*).
- 2. IMPORTANT Make a backup copy of the file.
- 3. Change the file attributes of *modelsim.ini* so it is no longer "read-only."
- 4. Open the file and enter your library mappings in the [Library] section. For example:

parts_lib = C:/libraries/parts_lib

- 5. Save the file.
- 6. Change the file attributes so the file is "read-only" again.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation and close the project.

- 1. Select **Simulate > End Simulation**. Click Yes.
- 2. Select the Project tab of the Main window Workspace.
- 3. Select **File > Close**. Click **OK**.

Introduction

ModelSim treats SystemC as just another design language. With only a few exceptions in the current release, you can simulate and debug your SystemC designs the same way you do HDL designs.

The functionality described in this lesson requires a systemc license feature in your ModelSim license file. Please contact your Mentor Graphics sales representative if you currently do not have such a feature.

Design Files for this Lesson

There are two sample designs for this lesson. The first is a very basic design, called "basic", containing only SystemC code. The second design is a ring buffer where the testbench and top-level chip are implemented in SystemC and the lower-level modules are written in HDL.

The pathnames to the files are as follows:

SystemC – <*install_dir*>/*examples*/*systemc*/*sc_basic*

SystemC/Verilog – <*install_dir*>/*examples*/*systemc*/*sc_vlog*

SystemC/VHDL – <*install_dir*>/*examples/systemc/sc_vhdl*

This lesson uses the SystemC/Verilog version of the ringbuf design in the examples. If you have a VHDL license, use the VHDL version instead. There is also a mixed version of the design, but the instructions here do not account for the slight differences in that version.

Related Reading

User's Manual Chapters: SystemC Simulation, Mixed-Language Simulation, and C Debug.

Reference Manual command: sccom.

Setting up the Environment

SystemC is a licensed feature. You need the *systemc* license feature in your ModelSim license file to simulate SystemC designs. Please contact your Mentor Graphics sales representatives if you currently do not have such a feature.

The table below shows the supported operating systems for SystemC and the corresponding required versions of a C compiler.

Platform	Supported compiler versions
RedHat Linux 7.2 and 7.3 RedHat Linux Enterprise version 2.1	gcc 3.2.3, gcc 4.0.2
AMD64 / SUSE Linux Enterprise Server 9.0, 9.1, 10 or Red Hat Enterprise Linux 3, 4	gcc 4.0.2 VCO is linux (32-bit binary) VCO is linux_x86_64 (64-bit binary)
Solaris 8, 9, 10	gcc 3.3
Windows 2000 and XP	Minimalist GNU for Windows (MinGW) gcc 3.3.1

 Table 6-1. Supported Operating Systems for SystemC

See SystemC simulation in the ModelSim User's Manual for further details.

Preparing an OSCI SystemC design

For an OpenSystemC Initiative (OSCI) compliant SystemC design to run on ModelSim, you must first:

- Replace sc_main() with an SC_MODULE, potentially adding a process to contain any testbench code
- Replace sc_start() by using the run command in the GUI
- Remove calls to **sc_initialize**()
- Export the top level SystemC design unit(s) using the SC_MODULE_EXPORT macro

In order to maintain portability between OSCI and ModelSim simulations, we recommend that you preserve the original code by using #ifdef to add the ModelSim-specific information. When the design is analyzed, sccom recognizes the MTI_SYSTEMC preprocessing directive and handles the code appropriately.

For more information on these modifications, refer to Modifying SystemC Source Code in the User's Manual.

1. Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be working with these lessons). Create the directory, then copy all files from <*install_dir>/examples/systemc/sc_basic* into the new directory.

2. Start ModelSim and change to the exercise directory.

If you just finished the previous lesson, ModelSim should already be running. If not, start ModelSim.

a. Type vsim at a UNIX shell prompt or use the ModelSim icon in Windows.

If the Welcome to ModelSim dialog appears, click Close.

- b. Select **File > Change Directory** and change to the directory you created in step 1.
- 3. Use a text editor to view and edit the *basic_orig.cpp* file. To use ModelSim's editor, from the Main Menu select **File > Open**. Change the files of type to C/C++ files then double-click *basic_orig.cpp*.
 - a. Using the **#ifdef MTI_SYSTEMC** preprocessor directive, add the **SC_MODULE_EXPORT(top);** to the design as shown in Figure 6-1. (The left side of Figure 6-1 is the original code; the right side is the modified code.) Close the preprocessing directive with **#else**.

The original code in the *.cpp* file follows directly after #else. End that section of the file with **#endif**.

b. Save the file as *basic.cpp*.

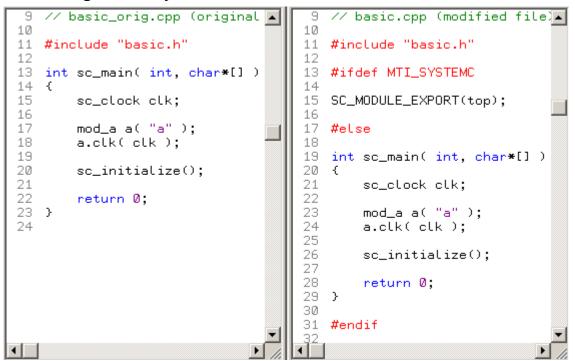


Figure 6-1. SystemC Code Before and After Modifications

A correctly modified copy of the *basic.cpp* is also available in the *sc_basic/gold* directory.

- 4. Edit the *basic_orig.h* header file as shown in Figure 6-2.
 - a. Add a ModelSim specific SC_MODULE (top) as shown in lines 52 through 65 of Figure 6-2.

The declarations that were in sc_main are placed here in the header file, in SC_MODULE (top). This creates a top level module above *mod_a*, which allows the tool's automatic name binding feature to properly associate the primitive channels with their names.

Figure 6-2. Editing the SystemC Header File.

```
// basic.h (modified header file)
 9
                                                                   10
11 #ifndef INCLUDED_BASIC
12 #define INCLUDED_BASIC
13
14 #include "systemc.h"
15
16 SC_MODULE( mod_a )
17
   {
18
        sc_in_clk clk;
19
20
        void main_action_method()
21
        {
22
            cout << simcontext()->delta_count()
23
                  << " main_action_method called" << endl;
24
        }
25
26
        void main_action_thread()
27
        {
28
            while( true ) {
29
                cout << simcontext()->delta_count()
30
                      << " main_action_thread called" << endl;</pre>
                wait();
31
32
            }
33
        3
34
35
        void main_action_cthread()
36
        {
37
            while( true ) {
38
                 cout << simcontext()->delta_count()
39
                      K< " main_action_cthread called" K< endl;</pre>
40
                wait();
41
            }
42
        }
43
44
        SC_CTOR( mod_a )
45
        -{
46
            SC_METHOD( main_action_method );
            SC_THREAD( main_action_thread );
47
48
            SC_CTHREAD( main_action_cthread, clk.pos() );
49
        }
50 };
51
52 #ifdef MTI_SYSTEMC
53 SC_MODULE(top)
54 (
55
        sc_clock clk;
56
        mod_a a;
57
58
        SC_CTOR(top)
59
            : clk("clk", 200, 0.5, 0.0, false),
              a("a")
60
61
        {
62
            a.clk( clk );
63
        }
64  };
65 #endif
€
```

b. Save the file as *basic.h*.

A correctly modified copy of the *basic.h* is also available in the *sc_basic/gold* directory.

You have now made all the edits that are required for preparing the design for compilation.

Compiling a SystemC-only Design

With the edits complete, you are ready to compile the design. Designs that contain only SystemC code are compiled with sccom.

- 1. Set the working library.
 - a. Type **vlib work** in the ModelSim Transcript window to create the working library.
- 2. Compile and link all SystemC files.
 - a. Type sccom -g basic.cpp at the ModelSim> prompt.

The **-g** argument compiles the design for debug.

b. Type **sccom -link** at the ModelSim> prompt to perform the final link on the SystemC objects.

You have successfully compiled and linked the design. The successful compilation verifies that all the necessary file modifications have been entered correctly.

In the next exercise you will compile and load a design that includes both SystemC and HDL code.

Mixed SystemC and HDL Example

In this next example, you have a SystemC testbench that instantiates an HDL module. In order for the SystemC testbench to interface properly with the HDL module, you must create a stub module, a foreign module declaration. You will use the scgenmod utility to create the foreign module declaration. Finally, you will link the created C object files using sccom -link.

1. Create a new exercise directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be working with these lessons). Create the directory, then copy all files from <*install_dir>/examples/systemc/sc_vlog* into the new directory.

If you have a VHDL license, copy the files in *<install_dir>/examples/systemc/sc_vhdl* instead.

2. Start ModelSim and change to the exercise directory

If you just finished the previous lesson, ModelSim should already be running. If not, start ModelSim.

a. Type **vsim** at a command shell prompt.

If the Welcome to ModelSim dialog appears, click Close.

- b. Select **File > Change Directory** and change to the directory you created in step 1.
- 3. Set the working library.
 - a. Type **vlib work** in the ModelSim Transcript window to create the working library.
- 4. Compile the design.
 - a. Verilog:

Type **vlog *.v** in the ModelSim Transcript window to compile all Verilog source files.

VHDL:

Type **vcom -93 *.vhd** in the ModelSim Transcript window to compile all VHDL source files.

- 5. Create the foreign module declaration (SystemC stub) for the Verilog module *ringbuf*.
 - a. Verilog:

Type **scgenmod -map "scalar=bool" ringbuf > ringbuf.h** at the ModelSim> prompt.

The **-map "scalar=bool"** argument is used to generate boolean scalar port types inside the foreign module declaration. See scgenmod for more information.

VHDL:

Type **scgenmod ringbuf > ringbuf.h** at the ModelSim> prompt.

The output is redirected to the file *ringbuf.h* (Figure 6-3).

Figure 6-3. The ringbuf.h File.

```
1 #ifndef _SCGENMOD_ringbuf_
 2 #define _SCGENMOD_ringbuf_
 З
 4 #include "systemc.h"
 5
 6 class ringbuf : public sc_foreign_module
 7
   -{
 8 public:
 9
       sc_in<bool> clock;
10
       sc_in<bool> reset;
11
       sc_in<bool> txda;
12
       sc_out<bool> rxda;
13
       sc_out<bool> txc;
14
       sc_out<bool> outstrobe;
15
16
17
       ringbuf(sc_module_name nm, const char* hdl_name,
18
          int num_generics, const char** generic_list)
19
        : sc_foreign_module(nm),
          clock("clock"),
20
          reset("reset"),
21
22
          txda("txda"),
          rxda("rxda"),
23
24
          txc("txc"),
25
          outstrobe("outstrobe")
26
        {
27
           elaborate_foreign_module(hdl_name, num_generics, generic_list);
28
       }
29
       ~ringbuf()
30
        {}
31
32 };
33
34 #endif
35
```

The *test_ringbuf.h* file is included in *test_ringbuf.cpp*, as shown in Figure 6-4.

Figure 6-4. The test_ringbuf.cpp File

```
8
9 // test_ringbuf.cpp
10
11 #include "test_ringbuf.h"
12 #include <iostream>
13
14
15 SC_MODULE_EXPORT(test_ringbuf);
16
```

- 6. Compile and link all SystemC files, including the generated *ringbuf.h*.
 - a. Type **sccom -g test_ringbuf.cpp** at the ModelSim> prompt.

The *test_ringbuf.cpp* file contains an include statement for *test_ringbuf.h* and a required SC_MODULE_EXPORT(top) statement, which informs ModelSim that the top-level module is SystemC.

- b. Type **sccom -link** at the ModelSim> prompt to perform the final link on the SystemC objects.
- 7. Load the design.
 - a. Enter the following command at the ModelSim> prompt in the Transcript pane.

vsim -voptargs="+acc" test_ringbuf

The -voptargs="+acc" argument for the vsim command provides visibility into the design for debugging purposes.

Note

By default, ModelSim optimizations are performed on all designs (see Optimizing Designs with vopt).

8. If necessary, you may close the Locals, Profile, and Watch panes of the Main window. Make sure the Objects and Active Processes panes are open, as shown in Figure 6-5. To open or close these windows, use the **View** menu.

Figure 6-5. The test_ringbuf Design

Workspace		*			H Ø .
▼ Instance	Design unit	🗢 Design unit ty	pe Visibility	▼ Name	Value
🖃 📕 test_ringbuf	test_ringbuf	ScModule	+acc= <full></full>	I counter	0
- 📕 clock	_sc_core::sc_cl	ock ScModule	+acc= <full></full>	reset_deactivation_ever	
📄 🗾 ring_INST	ringbuf(fast)	Module	+acc= <full></full>	- 🔶 reset	false
🕂 🔁 🔂 🔂	store(fast)	Module	+acc= <full></full>	🔷 txda	false
🕂 🔁 🔂 🔂	retrieve(fast)	Module	+acc= <full></full>	🔷 rxda	false
🔂 🗾 block1	control(fast)	Module	+acc= <full></full>	•	•
				<ready> #ASSIGN#76 /test_</ready>	
•				<ready> #ASSIGN#46 /test_</ready>	
👖 Library 🛺 si	m 📓 Files	🛐 Memories	< >		
		Memones		•	· ·
Transcript					
# vsim -voptargs=\"+a	cc\" test_ringbu	f			
# ** Note: (vsim-3812)	Design is being				
# Loading work/syster					
# Loading work.test_rii # Loading work.ringbu					
# Loading work.contro					
# Loading work.store(f					
# Loading work.retriev	e(fast)				
VSIM 8>					
] 🔒 Transcript					

Viewing SystemC Objects in the GUI

SystemC objects are denoted in the ModelSim GUI with a green 'S' in the Library tab and a green square, circle, or diamond icon elsewhere.

- 1. View Workspace and objects.
 - a. Click on the Library tab in the Workspace pane of the Main window.

SystemC objects have a green 'S' next to their names (Figure 6-6).

Workspace 🧮		#		X
▼ Name	Туре	⊽ Path		
□ work	Library	C:/Tutorial/e	xamples/syste	
	Optimized	d		
-M control	Module	C:\Tutorial\e	xamples\syste	
-M retrieve	Module	C:\Tutorial\e	xamples\syste	
-Mingbuf	Module	C:\Tutorial\e	xamples\syste	
store	Module	C:\Tutorial\e	xamples\syste	
S test_ringbuf	ScModul	e		
⊕ sv_std	Library	\$MODEL_T	ECH77sv_std	-
•			•	
🛛 🏨 Library 🛛 🛺 sim	📓 Files	📑 Memories		< >

Figure 6-6. SystemC Objects in the work Library

- 2. Observe window linkages.
 - a. Click on the sim tab in the Workspace pane of the Main window.
 - b. Select the *clock* instance in the sim tab (Figure 6-7).

The Objects window updates to show the associated SystemC or HDL objects.

Figure 6-7. SystemC Objects in the sim Tab of the Workspace

Workspace			Objects			₽ 🛯 🗙
▼ Instance	Design unit 👘 🗸	Design unit type	▼ Name		Value	Kind
🖃 📕 test_ringbuf	test_ringbuf	ScModule	- 🧇 I	m_delta	18446744073	ScVariable
-🗾 clock	sc_core::sc_clock	: ScModule	- 🔶 I	m_next_negedge_event	INACTIVE	ScEvent
🖃 🗾 ring_INST	ringbuf(fast)	Module	- 🔶 I	m_next_posedge_event	INACTIVE	ScEvent
🛛 🕁 🗾 block2	store(fast)	Module	- 🔶 i	m_cur_val	true	ScVariable
block3	retrieve(fast)	Module	⊞- ♦	m_negedge_time	5	ScVariable
📕 🖬 🖬 block1	control(fast)	Module	⊞- ♦	m_posedge_time	5	ScVariable
			⊞- ♦	m_start_time	0	ScVariable
			- 🧇 I	n_duty_cycle	0.5	ScVariable
			⊡- ♦ □	m_period	10	ScVariable
			ं 🔶 १	sig	false	ScPrimChannel
			•			Þ

- 3. Add objects to the Wave window.
 - a. Right-click *test_ringbuf* in the sim tab of the Workspace and select **Add > Add to Wave**.

Setting Breakpoints and Stepping in the Source Window

As with HDL files, you can set breakpoints and step through SystemC files in the Source window. In the case of SystemC, ModelSim uses C Debug, an interface to the open-source **gdb** debugger. Refer to the C Debug chapter in the User's Manual for complete details.

- 1. Set a breakpoint.
 - a. Double-click *test_ringbuf* in the sim pane of the Workspace to open the source file.
 - b. In the Source window:

Verilog: scroll to line 149 of *test_ringbuf.h*.

VHDL: scroll to line 157 of *test_ringbuf.h*.

c. Click in the BP column next to the red line number of the line (shown in Figure 6-8) containing:

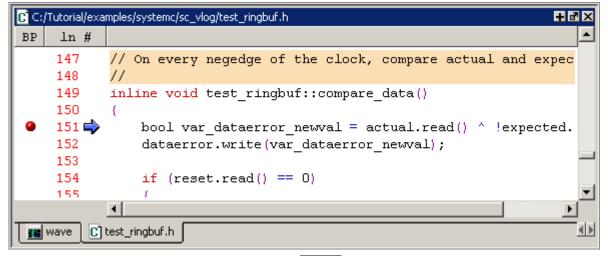
Verilog:bool var_dataerror_newval = actual.read ...

VHDL:sc_logic var_dataerror_newval = acutal.read ...

ModelSim recognizes that the file contains SystemC code and automatically launches C Debug. Once the debugger is running, ModelSim places a solid red ball next to the line number (Figure 6-8).

Figure 6-8. Active Breakpoint in a SystemC File

C C:	C C:/Tutorial/examples/systemc/sc_vlog/test_ringbuf.h 🗧 🗗 🗙				
BP	ln #				
	147 148	// On every negedge of the clock, compare actual and expec //			
	149	<pre>inline void test_ringbuf::compare_data()</pre>			
	150	{			
9	151	<pre>bool var_dataerror_newval = actual.read() ^ !expected.</pre>			
	152	dataerror.write(var_dataerror_newval);			
	153				
	154	<pre>if (reset.read() == 0)</pre>			
	155				
	wave 🖸	test_ringbuf.h			


2. Run and step through the code.

a. Type **run 500** at the VSIM> prompt.

When the simulation hits the breakpoint, it stops running, highlights the line with a blue arrow in the Source window (Figure 6-9), and issues a message like this in the Transcript:

```
# C breakpoint c.1
# test_ringbuf:compare_data() (this=0x842f658) at
test_ringbuf.h:<line_number>
```


b. Click the Step icon on the toolbar.

This steps the simulation to the next statement. Because the next statement is a function call, ModelSim steps into the function, which is in a separate file — $sc_signal.h$ (Figure 6-10).

Figure 6-10. Stepping into a Separate File

C C:/	QuestaSim_6.	3/include/systemc/sc_signal.h 🔹 🖻 🗙		
BP	ln #			
	434			
	435			
	436	// read the current value		
	437	virtual const bool& read() const		
	438 📫	{ return m_cur_val; }		
	439			
	440	<pre>// get a reference to the current value (for tracing)</pre>		
	441	<pre>virtual const bool& get_data_ref() const</pre>		
	442	(so denrecated get data ref() · return m cur wal · 💌		
wave C test_ringbuf.h C sc_signal.h				

c. Click the Continue Run icon in the toolbar.

The breakpoint in *test_ringbuf.h* is hit again.

Examining SystemC Objects and Variables

To examine the value of a SystemC object or variable, you can use the **examine** command or view the value in the Objects window.

- 1. View the value and type of an sc_signal.
 - a. Enter the **show** command at the **CDBG** > prompt to display a list of all design objects, including their types, in the Transcript.

In this list, you'll see that the type for *dataerror* is "boolean" (sc_logic for VHDL) and *counter* is "int" (Figure 6-11).

Transcript	A A
CDBG 14> show	
# ptype this	
# type = class test_ringbuf : public sc_module {	
# public:	
# struct sc_clock clock;	
# sc_event reset_deactivation_event;	
# sc_signal <bool> reset; # sc_signal<bool> txda;</bool></bool>	
# sc_signal <bool> txda; # sc_signal<bool> rxda;</bool></bool>	
# sc_signakbool> txc;	
# sc_signal <book (xc);<br=""># sc_signal<book>outstrobe;</book></book>	
# sc_signal <sc_dt::sc_uint<20> > pseudo;</sc_dt::sc_uint<20>	
# sc_signal <sc_dt::sc_uint<20>> storage;</sc_dt::sc_uint<20>	
# sc_signal <bool> expected;</bool>	
# sc_signal <bool> dataerror;</bool>	
# sc_signal <bool> actual;</bool>	
# int counter;	
# ringbuf *ring_INST;	
<pre># test_ringbuf & operator=(test_ringbuf const&); # test ringbuf(test ringbuf const&);</pre>	
# test_ringbuf(test_ringbuf const&); # void reset_generator();	
# void reset_generator(); # void generate data();	
# void generate_data(); # void compare_data();	
# void print error[];	
# void print_restore();	
# test_ringbuf(sc_core::sc_module_name);	
# virtual ~test_ringbuf();	
# } * const	
# ptype var_dataerror_newval	
# type = bool	
CDRC 15	
CDBG 15>	-
] 🔒 Transcript	< >

Figure 6-11. Output of show Command

b. Enter the **examine dataerror** command at the CDBG > prompt.

The value returned is "true".

- 2. View the value of a SystemC variable.
 - a. Enter the **examine counter** command at the CDBG > prompt to view the value of this variable.

The value returned is "-1".

Removing a Breakpoint

- 1. Return to the Source window for test_ringbuf.h and right-click the red ball in the BP column. Select **Remove Breakpoint** from the popup menu.
- 2. Click the Continue Run button again.

The simulation runs for 500 ns and waves are drawn in the Wave window (Figure 6-12).

If you are using the VHDL version, you might see warnings in the Main window transcript. These warnings are related to VHDL value conversion routines and can be ignored.

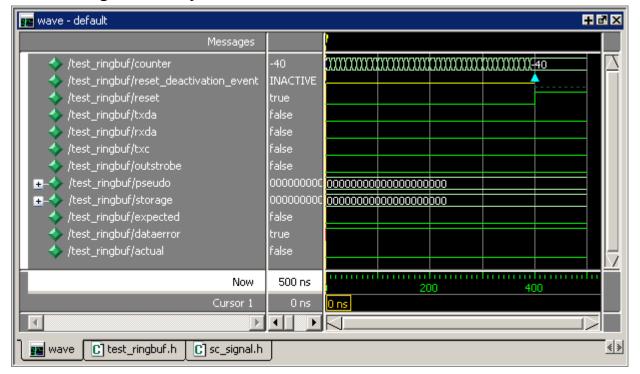
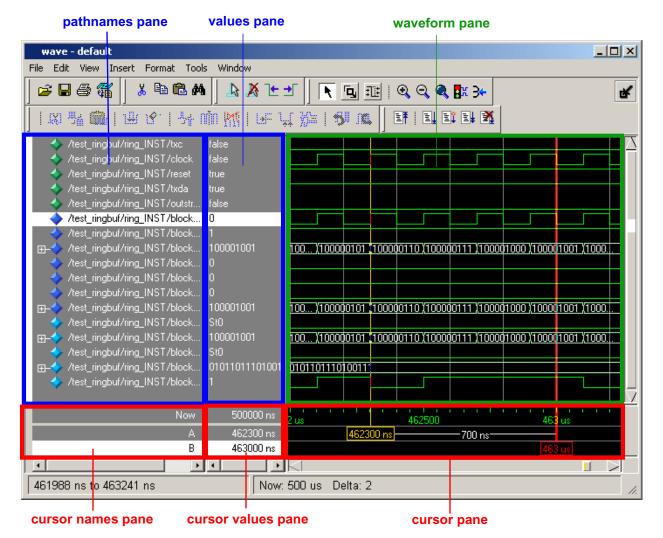


Figure 6-12. SystemC Primitive Channels in the Wave Window

Lesson Wrap-up


This concludes the lesson. Before continuing we need to quit the C debugger and end the current simulation.

- 1. Select **Tools > C Debug > Quit C Debug**.
- 2. Select **Simulate > End Simulation**. Click **Yes** when prompted to confirm that you wish to quit simulating.

Introduction

The Wave window allows you to view the results of your simulation as HDL waveforms and their values.

The Wave window is divided into a number of window panes (Figure 7-1). All window panes in the Wave window can be resized by clicking and dragging the bar between any two panes.

Figure 7-1. Panes of the Wave Window

Related Reading

User's Manual sections: Wave Window and Recording Simulation Results With Datasets.

Loading a Design

For the examples in this lesson, we have used the design simulated in **Basic Simulation**.

- 1. If you just finished the previous lesson, ModelSim should already be running. If not, start ModelSim.
 - a. Type vsim at a UNIX shell prompt or use the ModelSim icon in Windows.

If the Welcome to ModelSim dialog appears, click Close.

- 2. Load the design.
 - a. Select **File > Change Directory** and open the directory you created in Lesson 2.

The work library should already exist.

b. Enter the following command at the ModelSim> prompt in the Transcript pane.

vsim -voptargs="+acc" test_counter

The -voptargs="+acc" argument for the vsim command provides visibility into the design for debugging purposes.

Note.

By default, ModelSim optimizations are performed on all designs (see Optimizing Designs with vopt).

ModelSim loads the design and adds sim and Files tabs to the Workspace.

Add Objects to the Wave Window

ModelSim offers several methods for adding objects to the Wave window. In this exercise, you will try different methods.

- 1. Add objects from the Objects pane.
 - a. Select an item in the Objects pane of the Main window, right-click, and then select Add to Wave > Signals in Region.

ModelSim adds several signals to the Wave window.

2. Undock the Wave window.

By default ModelSim opens Wave windows as a tab in the MDI frame of the Main window. You can change the default via the Preferences dialog (**Tools > Edit**

in the second second

Preferences). Refer to the section Simulator GUI Preferences in the User's Manual for more information.

a. Click the undock button on the Wave pane (Figure 7-2).

The Wave pane becomes a standalone, un-docked window. You may need to resize the window.

		Undock button
📻 wave - default		★ ∎ ★
 /test_counter/clk /test_counter/reset /test_counter/count 	x x xxxxxxxx	
Now	0 ns	1 us 2 us
Cursor 1	0 ns	0 ns
	4 F	
wave wave		<u></u>

3. Add objects using drag-and-drop.

You can drag an object to the Wave window from many other windows and panes (e.g., Workspace, Objects, and Locals).

- a. In the Wave window, select **Edit > Select All** and then **Edit > Delete**.
- b. Drag an instance from the *sim* tab of the Main window to the Wave window.

ModelSim adds the objects for that instance to the Wave window.

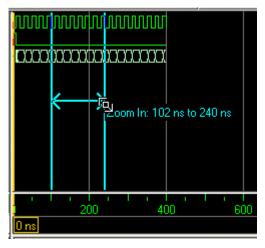
- c. Drag a signal from the Objects pane to the Wave window.
- d. In the Wave window, select **Edit > Select All** and then **Edit > Delete**.
- 4. Add objects using a command.
 - a. Type **add wave** * at the VSIM> prompt.

ModelSim adds all objects from the current region.

b. Run the simulation for awhile so you can see waveforms.

Zooming the Waveform Display

Zooming lets you change the display range in the waveform pane. There are numerous methods for zooming the display.


- 1. Zoom the display using various techniques.
 - a. Click the Zoom Mode icon on the Wave window toolbar.

b. In the waveform pane, click and drag down and to the right.

You should see blue vertical lines and numbers defining an area to zoom in (Figure 7-3).

Figure 7-3. Zooming in with the Mouse Pointer

c. Select View > Zoom > Zoom Last.

The waveform pane returns to the previous display range.

- d. Click the Zoom In 2x icon a few times.
- e. In the waveform pane, click and drag up and to the right.

You should see a blue line and numbers defining an area to zoom out.

 \odot

f. Select View > Zoom > Zoom Full.

Using Cursors in the Wave Window

Cursors mark simulation time in the Wave window. When ModelSim first draws the Wave window, it places one cursor at time zero. Clicking anywhere in the waveform pane brings that cursor to the mouse location.

You can also add additional cursors; name, lock, and delete cursors; use cursors to measure time intervals; and use cursors to find transitions.

Working with a Single Cursor

- 1. Position the cursor by clicking and dragging.
 - a. Click the Select Mode icon on the Wave window toolbar.

b. Click anywhere in the waveform pane.

A cursor is inserted at the time where you clicked (Figure 7-4).

Figure 7-4. Working with a Single Cursor in the Wave Window

💶 wave - default		+ a ×
 	0 0 00010000	
Now	400 ns) 100 200 300 400
Cursor 1	324 ns	324 ns
	Ⅰ ►	
I wave		<u>«</u> »

c. Drag the cursor and observe the value pane.

The signal values change as you move the cursor. This is perhaps the easiest way to examine the value of a signal at a particular time.

d. In the waveform pane, drag the cursor to the right of a transition with the mouse positioned over a waveform.

The cursor "snaps" to the transition. Cursors "snap" to a waveform edge if you click or drag a cursor to within ten pixels of a waveform edge. You can set the snap distance in the Window Preferences dialog (select **Tools > Window Preferences**).

e. In the cursor pane, drag the cursor to the right of a transition (Figure 7-4).

The cursor doesn't snap to a transition if you drag in the cursor pane.

- 2. Rename the cursor.
 - a. Right-click "Cursor 1" in the cursor name pane, and select and delete the text.
 - b. Type A and press Enter.

The cursor name changes to "A" (Figure 7-5).

😦 wave - default		+ @ ×
 ✓ /test_counter/clk ✓ /test_counter/reset ✓ /test_counter/count 	0 0 00010000	
Now	400 ns	0 100 200 300 400
A	324 ns	324 ns
	< F	
📔 wave		<u></u> «»

Figure 7-5. Renaming a Cursor

- 3. Jump the cursor to the next or previous transition.
 - a. Click signal *count* in the pathname pane.
 - b. Click the Find Next Transition icon on the Wave window toolbar.
 The cursor jumps to the next transition on the currently selected signal.
 - c. Click the Find Previous Transition icon on the Wave window toolbar. The cursor jumps to the previous transition on the currently selected signal.

Working with Multiple Cursors

- 1. Add a second cursor.
 - a. Click the Add Cursor icon on the Wave window toolbar.
 - b. Right-click the name of the new cursor and delete the text.
 - c. Type **B** and press Enter.
 - d. Drag cursor *B* and watch the interval measurement change dynamically (Figure 7-6).

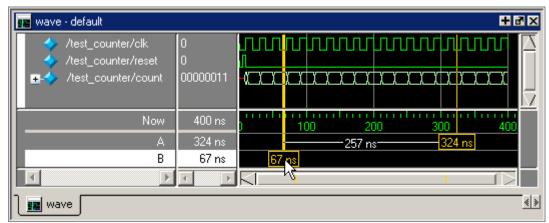
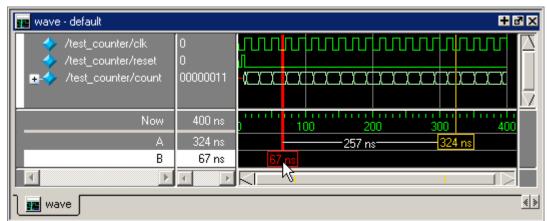



Figure 7-6. Interval Measurement Between Two Cursors

- 2. Lock cursor *B*.
 - a. Right-click cursor *B* in the cursor pane and select **Lock B**.

The cursor color changes to red and you can no longer drag the cursor (Figure 7-7).

Figure 7-7. A Locked Cursor in the Wave Window

- 3. Delete cursor *B*.
 - a. Right-click cursor *B* and select **Delete B**.

Saving and Reusing the Window Format

If you close the Wave window, any configurations you made to the window (e.g., signals added, cursors set, etc.) are discarded. However, you can use the Save Format command to capture the current Wave window display and signal preferences to a *.do* file. You open the *.do* file later to recreate the Wave window as it appeared when the file was created.

Format files are design-specific; use them only with the design you were simulating when they were created.

- 1. Save a format file.
 - a. In the Wave window, select **File > Save**.
 - b. In the Pathname field of the Save Format dialog, leave the file name set to *wave.do* and click **OK**.
 - c. Close the Wave window.
- 2. Load a format file.
 - a. In the Main window, select **View > Wave**.
 - b. Undock the window.

All signals and cursor(s) that you had set are gone.

- c. In the Wave window, select **File > Load**.
- d. In the Open Format dialog, select *wave.do* and click **Open**.

ModelSim restores the window to its previous state.

e. Close the Wave window when you are finished by selecting **File > Close Window**.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Select **Simulate > End Simulation**. Click Yes.

Chapter 8 Creating Stimulus With Waveform Editor

Introduction

The Waveform Editor creates stimulus for your design via interactive manipulation of waveforms. You can then run the simulation with these edited waveforms or export them to a stimulus file for later use.

In this lesson you will do the following:

- Load the *counter* design unit without a testbench
- Create waves via a wizard
- Edit waves interactively in the Wave window
- Export the waves to an HDL testbench and extended VCD file
- Run the simulation
- Re-simulate using the exported testbench and VCD file

Related Reading

User's Manual Sections: Generating Stimulus with Waveform Editor and Wave Window.

Load a Design Unit

For the examples in this lesson, we will use part of the design simulated in Basic Simulation.

Note.

You can also use the Waveform Editor prior to loading a design. Refer to the section Using Waveform Editor Prior to Loading a Design in the User Manual for more information.

- 1. If you just finished the previous lesson, ModelSim should already be running. If not, start ModelSim.
 - a. Type vsim at a UNIX shell prompt or use the ModelSim icon in Windows.

If the Welcome to ModelSim dialog appears, click Close.

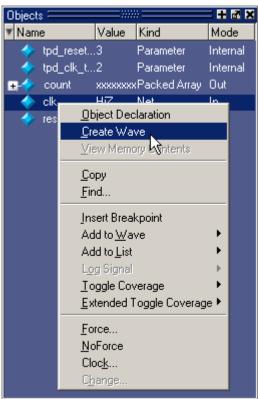
- 2. Open a Wave window.
 - a. Select **View > Wave** from the Main window menus.

- 3. Load the *counter* design unit.
 - a. Select File > Change Directory and open the directory you created in Lesson 2.
 The *work* library should already exist.
 - b. Enter the following command at the ModelSim> prompt in the Transcript pane.

vsim -voptargs="+acc" counter

The -voptargs="+acc" argument for the vsim command provides visibility into the design for debugging purposes.

_Note.


By default, ModelSim optimizations are performed on all designs (see Optimizing Designs with vopt).

ModelSim loads the *counter* design unit and adds *sim*, *Files*, and *Memories* tabs to the Workspace.

Create Graphical Stimulus with a Wizard

Waveform Editor includes a Create Pattern Wizard that walks you through the process of creating editable waveforms.

- 1. Use the Create Pattern Wizard to create a clock pattern.
 - a. In the Objects pane, right click signal *clk* and select **Create Wave** (Figure 8-1).

Figure 8-1. Initiating the Create Pattern Wizard from the Objects Pane

This opens the Create Pattern Wizard dialog where you specify the type of pattern (Clock, Repeater, etc.) and a start and end time.

b. The default pattern is Clock, which is what we need, so click **Next** (Figure 8-2).

			×
Select Pattern Patterns Clock Constant Random Repeater Counter	Signal Name sim:/counter/clk Start Time 0	End Time 1000	Time Unit
	< Prev	ious Next >	Cancel

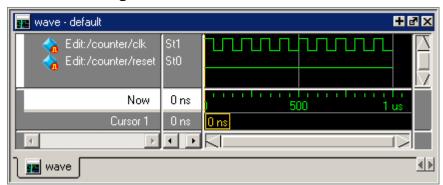
Figure 8-2. Create Pattern Wizard

c. In the second dialog of the wizard, enter **1** for Initial Value. Leave everything else as is and click **Finish** (Figure 8-3).

sim:/counter/clk <pattern :="" clock<="" th=""><th>> ×</th></pattern>	> ×
Specify the Clock Pattern Attributes.	Clock Attributes Initial Value 1 Clock Period Time Unit 100 ns V Duty Cycle 50
< Pre	vious Finish Cancel

Figure 8-3. Specifying Clock Pattern Attributes

A generated waveform appears in the Wave window (Figure 8-4). Notice the small red dot on the waveform icon and the prefix "Edit:". These items denote an editable wave. (You may want to undock the Wave window.)


Figure 8-4. The clk Waveform

💼 wave - default		+ 2	×
← Edit:/counter/clk	St1		
Now	0 ns) 500 1us	
Cursor 1	0 ns	0 ns	
wave wave			< >

- 2. Create a second wave using the wizard.
 - a. Right-click signal *reset* in the Objects pane and select **Create Wave** from the popup menu.
 - b. Select **Constant** for the pattern type and click **Next**.
 - c. Enter **0** for the Value and click **Finish**.

A second generated waveform appears in the Wave window (Figure 8-5).

Figure 8-5. The reset Waveform

Edit Waveforms in the Wave Window

Waveform Editor gives you numerous commands for interactively editing waveforms (e.g., invert, mirror, stretch edge, cut, paste, etc.). You can access these commands via the menus, toolbar buttons, or via keyboard and mouse shortcuts. You will try out several commands in this part of the exercise.

- 1. Insert a pulse on signal reset.
 - a. Click the Edit Mode icon in the toolbar.

- b. In the Wave window, click the *reset* signal so it is selected.
- c. Click the Insert Pulse icon in the toolbar. 14

Or, in the waveform pane of the Wave window, right-click on the *reset* signal waveform and select **Wave > Insert Pulse**.

d. In the Edit Insert Pulse dialog, enter **100** in the Duration field and **100** in the Time field (Figure 8-6), and click OK.

Figure 8-6.	Edit	Insert	Pulse	Dialog
-------------	------	--------	-------	--------

Edit Insert Pulse						
Signal Name	Signal Name					
Edit:/counter/re	Edit:/counter/reset					
Duration 100	Time 100	Time Unit				
		OK Cancel				

Signal reset now goes high from 100 ns to 200 ns (Figure 8-7).

🗾 wave - default		+ B ×
Cdit:/counter/clk	St1 StO	
Now Cursor 1	0 ns 0 ns	0 ns
wave	• •	

Figure 8-7. Signal reset with an Inserted Pulse

- 2. Stretch an edge on signal *clk*.
 - a. Click the signal *clk* waveform just to the right of the transition at 350 ns. The cursor should snap to the transition at 350 ns.
 - b. Right-click that same transition and select **Wave > Stretch Edge** from the popup menu.

If the command is dimmed out, the cursor probably isn't on the edge at 350 ns.

c. In the Edit Stretch Edge dialog, enter 50 for Duration, make sure the Time field shows 350, and then click OK (Figure 8-8).

Edit Stretch	Edge		×
Signal Name			
Edit:/counter/clk			
Direction			
• Forward C	Backward		
Duration	Time		Time Unit
50	350		ns 💌
		OK	Cancel

Figure 8-8. Edit Stretch Edge Dialog

The wave edge stretches so it is high from 300 to 400 ns (Figure 8-9).

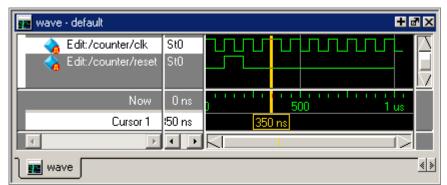


Figure 8-9. Stretching an Edge on the *clk* Signal

Note the difference between stretching and moving an edge — the Stretch command moves an edge by moving other edges on the waveform (either increasing waveform duration or deleting edges at the beginning of simulation time); the Move command moves an edge but does not move other edges on the waveform. You should see in the Wave window that the waveform for signal clk now extends to 1050 ns.

- 3. Delete an edge.
 - a. Click signal *clk* just to the right of the transition at 400 ns.

The cursor should "snap" to 400 ns.

b. Click the Delete Edge icon.

This opens the Edit Delete Edge dialog. The Time is already set to 400 ns. Click **OK**. The edge is deleted and *clk* now stays high until 500 ns (Figure 8-10).

💶 wave - default			+ 6	7 ×
Edit:/counter/clk	StO StO			
Now	0 ns		500 1us	
Cursor 1	-00 ns	400) ns	
I E	• •			
📃 wave				< >

Figure 8-10. Deleting an Edge on the *clk* Signal

- 4. Undo and redo an edit.
 - a. Click the Undo icon.

The Edit Undo dialog opens, allowing you to select the Undo Count - the number of past actions to undo. Click **OK** with the Undo Count set to 1 and the deleted edge at 400 ns reappears.

b. Click the Redo icon.

The edge is deleted again. You can undo and redo any number of editing operations *except* extending all waves and changing drive types. Those two edits cannot be undone.

Save and Reuse the Wave Commands

 \bigcirc

You can save the commands that ModelSim used to create the waveforms. You can load this "format" file at a later time to re-create the waves. In this exercise, we will save the commands, quit and reload the simulation, and then open the format file.

- 1. Save the wave commands to a format file.
 - a. Select **File** > **Close** in the menu bar and you will be prompted to save the wave commands.
 - b. Click Yes.
 - c. Type *waveedit.do* in the File name field of the Save Commands dialog that opens and then click Save.

This saves a DO file named *waveedit.do* to the current directory and closes the Wave window.

- 2. Quit and then reload the simulation.
 - a. In the Main window, select **Simulate > End Simulation**, and click Yes to confirm you want to quit simulating.
 - b. To reload the simulation, enter the following command at the ModelSim> prompt.

vsim -voptargs="+acc" counter

- 3. Open the format file.
 - a. Select View > Wave to open the Wave window.
 - b. Select **File > Load** from the menu bar.
 - c. Double-click *waveedit.do* to open the file.

The waves you created earlier in the lesson reappear. If waves do not appear, you probably did not load the *counter* design unit.

Exporting the Created Waveforms

At this point you can run the simulation or you can export the created waveforms to one of four stimulus file formats. You will run the simulation in a minute but first let us export the created waveforms so we can use them later in the lesson.

- 1. Export the created waveforms in an HDL testbench format.
 - a. Select **File > Export > Waveform**.
 - b. Select **Verilog Testbench** (or **VHDL Testbench** if you are using the VHDL sample files).
 - c. Enter **1000** for End Time if necessary.
 - d. Enter **export** in the File Name field and click **OK** (Figure 8-11).

Export Waveform		×
Save As		
C Force File C EV	/CD File 🔿 VHDL Testbench	Verilog Testbench
Start Time	End Time	Time Unit
0	1000	ns 💌
Design Unit Name		
counter		
File Name		
export		Browse
🔲 OverWrite Existin	g Files	
		<u>O</u> K <u>C</u> ancel

Figure 8-11. The Export Waveform Dialog

ModelSim creates a file named *export.v* (or *export.vhd*) in the current directory. Later in the lesson we will compile and simulate the file.

- 2. Export the created waveforms in an extended VCD format.
 - a. Select **File > Export > Waveform**.
 - b. Select EVCD File.
 - c. Enter 1000 for End Time if necessary and click OK.

ModelSim creates an extended VCD file named *export.vcd*. We will import this file later in the lesson.

Run the Simulation

Once you have finished editing the waveforms, you can run the simulation straight away.

- 1. Add a design signal.
 - a. In the Objects pane, right-click *count* and select **Add to Wave > Selected Signals**.

The signal is added to the Wave window.

- 2. Run the simulation.
 - a. Click the Run -All icon.

The simulation runs for 1000 ns and the waveform is drawn for *sim:/counter/count* (Figure 8-12).

Figure 8-12. The counter Waveform Reacts to Stimulus Patterns

💼 wave - default		+@X
Cdit:/counter/clk Cdit:/counter/reset Counter/reset Sim:/counter/count	St0 St0 00000111	
Now	1000 ns) 500 lus
Cursor 1	0 ns	0 ns
T D	4 F	
wave wave		<u>«</u> »

Look at the signal transitions for *count* from 300 ns to 500 ns. The transitions occur when *clk* goes high, and you can see that *count* follows the pattern you created when you edited *clk* by stretching and deleting edges.

- 3. Quit the simulation.
 - a. In the Main window, select **Simulate > End Simulation**, and click Yes to confirm you want to quit simulating.

Simulating with the Testbench File

Earlier in the lesson you exported the created waveforms to a testbench file. In this exercise you will compile and load the testbench and then run the simulation.

- 1. Compile and load the testbench.
 - a. At the ModelSim prompt, enter **vlog export.v** (or **vcom export.vhd** if you are working with VHDL files).

You should see a design unit named *export* appear in the Library tab (Figure 8-13).

Workspace 💳			2
▼ Name	Туре	Path	*
⊟ f1_ work	Library	work	
Counter	Module	C:/modeltech/	
N - M export	Module	C:\modeltech\	
VS 山前 test_counter	Module	C:/modeltech/	
⊕ vital2000	Library	\$MODEL_TEC -	
⊞– ieee	Library	\$MODEL_TEC	
⊕– <mark>∭</mark> modelsim_lib	Library	\$MODEL_TEC	
in the state	Librari	MUNDEL TER	-
•		•	
Library		*	3

Figure 8-13. The *export* Testbench Compiled into the work Library

b. Enter the following command at the ModelSim> prompt.

vsim -voptargs="+acc" export

- 2. Add waves and run the design.
 - a. At the VSIM> prompt, type **add wave ***.
 - b. Next type **run 1000**.

The waveforms in the Wave window match those you saw in the last exercise (Figure 8-14).

Figure 8-14. Waves from Newly Created Testbench

💼 wave - default			+ @ ×
	00000111 1 0	<u>(o (o)000000010 </u>	
Now	1000 ns)	:
Cursor 1	0 ns	0 ns	
	• •	KI	
wave wave			< >

- 3. Quit the simulation.
 - a. In the Main window, select **Simulate > End Simulation**, and click Yes to confirm you want to quit simulating.

Importing an EVCD File

Earlier in the lesson you exported the created waveforms to an extended VCD file. In this exercise you will use that file to stimulate the *counter* design unit.

- 1. Load the *counter* design unit and add waves.
 - a. Enter the following command at the ModelSim> prompt.

```
vsim -voptargs="+acc" counter
```

- b. In the Objects pane, right-click *count* and select **Add to Wave > Selected Signals**.
- 2. Import the VCD file.
 - a. Make sure the Wave window is active, then select **File > Import > EVCD** from the menu bar.
 - b. Double-click *export.vcd*.

The created waveforms draw in the Wave window (Figure 8-15).

💼 wave - default		+ @ ×
sim:/counter/count Edit:/counter/clk	xxxxxxxx St1 St0	
Now	0 ns	500 1us
Cursor 1	0 ns	0 ns
l 📰 wave		<u>« »</u>

Figure 8-15. EVCD File Loaded in Wave Window

c. Click the Run -All icon.

The simulation runs for 1000 ns and the waveform is drawn for *sim:/counter/count* (Figure 8-16).

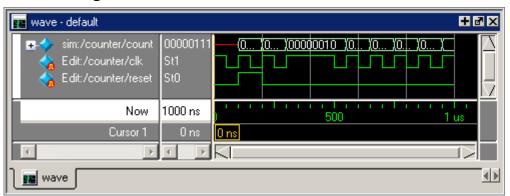


Figure 8-16. Simulation results with EVCD File

When you import an EVCD file, signal mapping happens automatically if signal names and widths match. If they do not, you have to manually map the signals. Refer to the section Signal Mapping and Importing EVCD Files in the User's Manual for more information.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. In the Main window, select **Simulate > End Simulation**. Click Yes.

Introduction

The Dataflow window allows you to explore the "physical" connectivity of your design; to trace events that propagate through the design; and to identify the cause of unexpected outputs. The window displays processes; signals, nets, and registers; and interconnect.

The functionality described in this lesson requires a dataflow license feature in your ModelSim license file. Please contact your Mentor Graphics sales representative if you currently do not have such a feature.

Design Files for this Lesson

The sample design for this lesson is a testbench that verifies a cache module and how it works with primary memory. A processor design unit provides read and write requests.

The pathnames to the files are as follows:

Verilog – <*install_dir*>/*examples*/*tutorials*/*verilog*/*dataflow*

VHDL – <*install_dir*>/*examples*/*tutorials*/*vhdl*/*dataflow*

This lesson uses the Verilog version in the examples. If you have a VHDL license, use the VHDL version instead. When necessary, we distinguish between the Verilog and VHDL versions of the design.

Related Reading

User's Manual Sections: Debugging with the Dataflow Window and Dataflow Window.

Compile and Load the Design

In this exercise you will use a DO file to compile and load the design.

1. Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be working with these lessons). Create the directory and copy all files from <*install_dir>/examples/tutorials/verilog/dataflow* to the new directory.

If you have a VHDL license, copy the files in <*install_dir>/examples/tutorials/vhdl/dataflow* instead.

2. Start ModelSim and change to the exercise directory.

If you just finished the previous lesson, ModelSim should already be running. If not, start ModelSim.

a. Type **vsim** at a UNIX shell prompt or use the ModelSim icon in Windows.

If the Welcome to ModelSim dialog appears, click Close.

- b. Select **File > Change Directory** and change to the directory you created in step 1.
- 3. Execute the lesson DO file.
 - a. Type **do run.do** at the ModelSim> prompt.

The DO file does the following:

- Creates the working library
- Compiles the design files
- Opens the Dataflow window
- Adds signals to the Wave window
- Logs all signals in the design
- Runs the simulation

Feel free to open the DO file and look at its contents.

Exploring Connectivity

A primary use of the Dataflow window is exploring the "physical" connectivity of your design. You do this by expanding the view from process to process. This allows you to see the drivers/receivers of a particular signal, net, or register.

- 1. Add a signal to the Dataflow window.
 - a. Make sure instance *p* is selected in the **sim** tab of the Workspace pane.
 - b. Drag signal *strb* from the Objects pane to the Dataflow window (Figure 9-1).

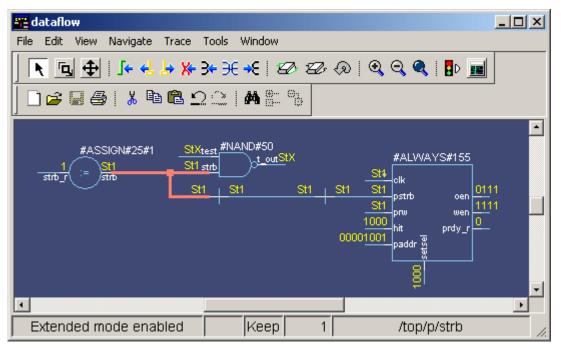



Figure 9-1. A Signal in the Dataflow Window

- 2. Explore the design.
 - a. Double-click the net highlighted in red.

The view expands to display the processes that are connected to *strb* (Figure 9-2).

Figure 9-2. Expanding the View to Display Connected Processes

Select signal *test* on process *#NAND#50* (labeled *line_71* in the VHDL version) and click the **Expand net to all drivers** icon.

ataflow	<u>- ×</u>
File Edit View Navigate Trace Tools Window	
▶ ҧ ⊕ ♪ + + ≯ + + + 20 20 0 0, 0, 0, 1 ⊡	
] 🗋 🚘 🗑 🛃 🕌 🛍 🕰 😂 🖊 🎥 🧞	
	<u>0111</u> <u>1111</u> 0
	•
Extended mode enabled Keep 1 /top/p/test	

Notice that after the display expands, the signal line for *strb* is highlighted in green. This highlighting indicates the path you have traversed in the design.

Select signal *oen* on process #ALWAYS#155(labeled *line_84* in the VHDL version), and click the **Expand net to all readers** icon.

Continue exploring if you wish.

When you are done, click the **Erase All** icon. \mathbb{Z}_{r}

Tracing Events

Another useful debugging feature is tracing events that contribute to an unexpected output value. Using the Dataflow window's embedded wave viewer, you can trace backward from a transition to see which process or signal caused the unexpected output.

- 1. Add an object to the Dataflow window.
 - a. Make sure instance p is selected in the sim tab of the Main window.
 - b. Drag signal *t_out* from the Objects pane into the Dataflow window.
 - c. Undock the Dataflow window.

d. Select **View > Show Wave** in the Dataflow window to open the wave viewer (Figure 9-4). You may need to increase the size of the Dataflow window and scroll the panes to see everything.

📲 dataflow
File Edit View Navigate Trace Tools Window
💽 🔁 ♪ 🔸 👃 ≫ ≫ 升 🗲 🕫 🕫 🐼 🍳 🔍 関 🔜
] □ ☞ 🗑 ❹ ¼ 🖻 🛍 ቧ 그 🗛 🖺 %
StX _{test} #NAND#50 St1_std
Wave Viewer
Now 2820 ns 500 1
Cursor 1 O ns O ns
Extended mode enabled Keep 1 /top/p/t_out //

Figure 9-4. The embedded wave viewer pane

- 2. Trace the inputs of the nand gate.
 - a. Select process #NAND#50 (labeled *line_71* in the VHDL version) in the dataflow pane. All input and output signals of the process are displayed in the wave viewer (Figure 9-5).

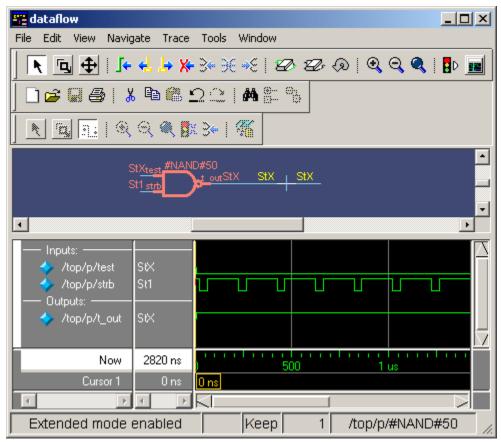


Figure 9-5. Signals Added to the Wave Viewer Automatically

- b. In the wave view, scroll to time 2785 ns (the last transition of signal t_out).
- c. Click just to the right of the last transition of signal t_out . The cursor should snap to time 2785 ns.
- d. Select **Trace > Trace next event** to trace the first contributing event.

ModelSim adds a cursor marking the last event, the transition of the strobe to 0 at 2745 ns, which caused the output of 1 on t_out (Figure 9-6).

	Q Q (R 🕅	Э⊷]	I F I I	l Iî I	ŧ 🕺		_				
Inputs: /top/p/test /top/p/strb Outputs:	SIX SIO											
Now	320 ns	2200		duuu	2400		liiiii	2600		liiii	2800	
Cursor 1	'85 ns									40 ns	2785 ns	
Cursor 2	'45 ns									274	5 ns	
		K										
Extended mode	e enable	ed		Keep	1			/top/p/	#NANE	0#50		//.

Figure 9-6. Cursor in Wave Viewer Marks Last Event

e. Select **Trace > Trace next event** two more times.

f. Select **Trace > Trace event set**.

The dataflow pane sprouts to the preceding process and shows the input driver of signal *strb* (Figure 9-7). Notice too that the wave viewer now shows the input and output signals of the newly selected process.

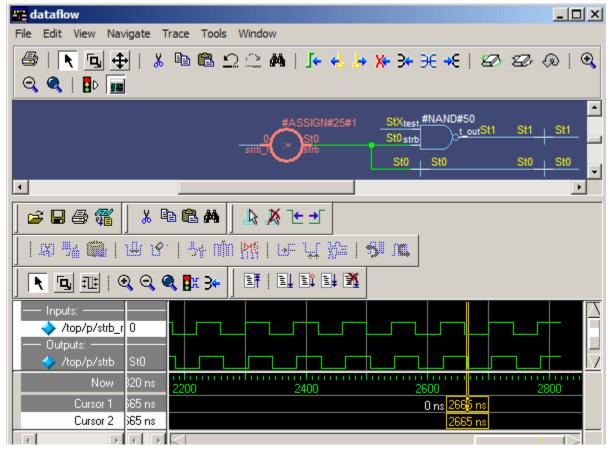


Figure 9-7. Tracing the Event Set

You can continue tracing events through the design in this manner: select **Trace next event** until you get to a transition of interest in the wave viewer, and then select **Trace event set** to update the dataflow pane.

3. Select **File > Close** to close the Dataflow window.

Tracing an X (Unknown)

The Dataflow window lets you easily track an unknown value (X) as it propagates through the design. The Dataflow window is linked to the stand-alone Wave window, so you can view signals in the Wave window and then use the Dataflow window to track the source of a problem. As you traverse your design in the Dataflow window, appropriate signals are added automatically to the Wave window.

- 1. View *t_out* in the Wave and Dataflow windows.
 - a. Scroll in the Wave window until you can see /top/p/t_out.

 t_out goes to an unknown state, StX, at 2065 ns and continues transitioning between 1 and unknown for the rest of the run (Figure 9-8). The red color of the waveform indicates an unknown value.

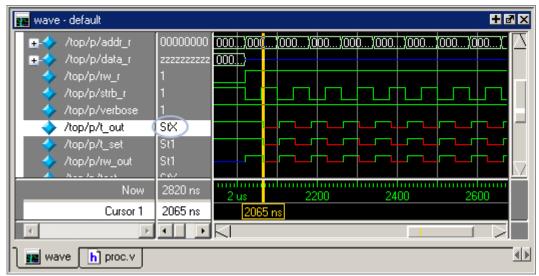


Figure 9-8. A Signal with Unknown Values

b. Double-click the *t_out* waveform at the last transition of signal *t_out* at 2785 ns.

This automatically opens the Dataflow window and displays t_out , its associated process, and its waveform. You may need to increase the size of the Dataflow window and scroll the panes to see everything.

c. Move the cursor in the Wave window.

As previously mentioned the Wave and Dataflow windows are designed to work together. As you move the cursor in the Wave, the value of t_out changes in the Dataflow window.

- d. Move the cursor to a time when *t_out* is unknown (e.g., 2725 ns).
- 2. Trace the unknown.
 - a. In the Dataflow window, make sure *t_out* is selected and then select **Trace** > **ChaseX**.

The design expands to show the source of the unknown (Figure 9-9). In this case there is a HiZ (U in the VHDL version) on input signal *test_in* and a 0 on input signal *_rw* (*bar_rw* in the VHDL version), so output signal *test2* resolves to an unknown.

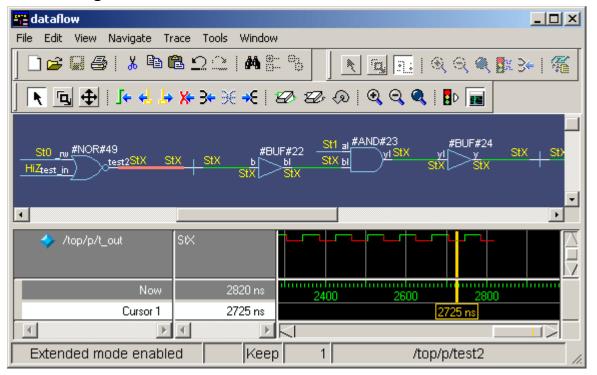
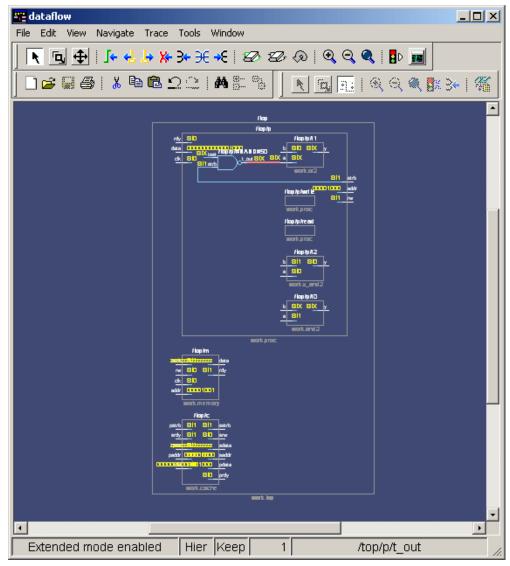


Figure 9-9. ChaseX Identifies Cause of Unknown on t_out

Scroll to the bottom of the Wave window, and you will see that all of the signals contributing to the unknown value have been added.

- 3. Clear the Dataflow window before continuing.
 - a. Click the **Erase All** icon to clear the Dataflow view.
 - b. Click the Show Wave icon to close the Wave view of the Dataflow window.


Displaying Hierarchy in the Dataflow Window

You can display connectivity in the Dataflow window using hierarchical instances. You enable this by modifying the options prior to adding objects to the window.

- 1. Change options to display hierarchy.
 - a. Select **Tools > Options** from the Dataflow window menu bar.
 - b. Check **Show Hierarchy** and then click **OK**.
- 2. Add signal *t_out* to the Dataflow window.
 - a. Type **add dataflow** /**top**/p/t_out at the VSIM> prompt.

The Dataflow window will display *t_out* and all hierarchical instances (Figure 9-10).

Figure 9-10. Displaying Hierarchy in the Dataflow Window

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Type **quit -sim** at the VSIM> prompt.

Chapter 10 Viewing And Initializing Memories

Introduction

In this lesson you will learn how to view and initialize memories in ModelSim. ModelSim defines and lists as memories any of the following:

- reg, wire, and std_logic arrays
- Integer arrays
- Single dimensional arrays of VHDL enumerated types other than std_logic

Design Files for this Lesson

The ModelSim installation comes with Verilog and VHDL versions of the example design. The files are located in the following directories:

Verilog – <*install_dir>/examples/tutorials/verilog/memory*

VHDL - <install_dir>/examples/tutorials/vhdl/memory

This lesson uses the Verilog version for the exercises. If you have a VHDL license, use the VHDL version instead.

Related Reading

User's Manual Section: Memory Panes.

Reference Manul commands: mem display, mem load, mem save, and radix.

Compile and Load the Design

1. Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be working with these lessons). Create the directory and copy all files from <*install_dir>/examples/tutorials/verilog/memory* to the new directory.

If you have a VHDL license, copy the files in <*install_dir>/examples/tutorials/vhdl/memory* instead.

2. Start ModelSim and change to the exercise directory.

If you just finished the previous lesson, ModelSim should already be running. If not, start ModelSim.

a. Type vsim at a UNIX shell prompt or use the ModelSim icon in Windows.

If the Welcome to ModelSim dialog appears, click Close.

- b. Select **File > Change Directory** and change to the directory you created in step 1.
- 3. Create the working library and compile the design.
 - a. Type **vlib work** at the ModelSim> prompt.
 - b. Verilog:

Type vlog sp_syn_ram.v dp_syn_ram.v ram_tb.v at the ModelSim> prompt.

VHDL:

Type **vcom -93 sp_syn_ram.vhd dp_syn_ram.vhd ram_tb.vhd** at the ModelSim> prompt.

- 4. Load the design.
 - a. On the Library tab of the Main window Workspace, click the "+" icon next to the *work* library.
 - b. Enter the following command at the ModelSim> prompt in the Transcript window.

vsim -voptargs="+acc" ram_tb

The -voptargs="+acc" argument for the vsim command provides visibility into the design for debugging purposes.

Note.

By default, ModelSim optimizations are performed on all designs (see Optimizing Designs with vopt).

View a Memory and its Contents

The Memories tab of the Main window lists all memories in the design (Figure 10-1) when the design is loaded; with the range, depth, and width of each memory displayed.

Worksp	ace ====================================			+ 🖬 🗙
🔻 Insta	nce	Range	Depth	Width
- 🔶	/ram_tb/spram1/mem	[0:4095]	4096	8
- 🔶	/ram_tb/spram2/mem	[0:2047]	2048	17
- 🔶	/ram_tb/spram3/mem	[0:65535]	65536	32
•	/ram_tb/spram4/mem	[0:3]	4	16
- 🔶	/ram_tb/dpram1/mem	[0:15]	16	8
, THI I	Library 🛺 sim 📓	Files 📑 t	demories	

Figure 10-1. Viewing the Memories Tab in the Main Window Workspace

VHDL: The radix for enumerated types is Symbolic. To change the radix to binary for the purposes of this lesson, type the following command at the VSIM> prompt:

radix bin

- 1. Open a Memory instance to show its contents.
 - a. Double-click the */ram_tb/spram1/mem* instance in the memories list to view its contents in the MDI frame.

A **mem** tab is created in the MDI frame to display the memory contents. The data are all X (0 in VHDL) since you have not yet simulated the design. The first column (blue hex characters) lists the addresses (Figure 10-2), and the remaining columns show the data values.

Figure 10-2. The mem Tab in the MDI Frame Shows Addresses and Data

📑 memory - /ra	am_tb/spram1	/mem				+ 2	×
00000000	******	******	******	******	******	*******	1
00000006	*******	******	******	*******	*******	*******	
0000000c	*******	******	******	******	*******	*******	
00000012	*******	******	******	******	*******	*******	
00000018	******	******	******	******	*******	*******	
0000001e	******	******	******	******	******	*******	
00000024	******	******	******	******	*******	*******	
0000002a	*******	*******	*******	******	*******	*******	
00000030	*******	******	******	*******	*******	*******	
00000036	*******	*******	*******	*******	*******	*******	
0000003e	*******	*******	*******	*******	*******	*******	
4 ×	4					Þ	•
📑 mem 🗌						4	< >

- b. Double-click instance /ram_tb/spram2/mem in the Memories tab of the Workspace, This creates a new tab in the MDI frame called mem(1) that contains the addresses and data for the spram2 instance. Each time you double-click a new memory instance in the Workspace, a new tab is created for that instance in the MDI frame.
- 2. Simulate the design.

a. Click the **run -all** icon in the Main window.

b. Click the **mem** tab of the MDI frame to bring the */ram_tb/spram1/mem* to the foreground. The data fields now show values (Figure 10-3).

Figure 10-3. The Memory Display Updates with the Simulation

	📴 memory - /ram_tb/spram1/mem 🛛 🛨 🖻							
	00000000	00101000	00101001	00101010	00101011	00101100	00101101	
	00000006	00101110	00101111	00110000	00110001	00110010	00110011	
	0000000c	00110100	00110101	00110110	00110111	00111000	00111001	
	00000012	00111010	00111011	00111100	00111101	00111110	00111111	
	00000018	01000000	01000001	01000010	01000011	01000100	01000101	
	0000001e	01000110	01000111	01001000	01001001	01001010	01001011	
	00000024	01001100	01001101	01001110	01001111	01010000	01010001	
	0000002a	01010010	01010011	01010100	01010101	01010110	01010111	
	00000030	01011000	01011001	01011010	01011011	01011100	01011101	
	00000036	01011110	01011111	01100000	01100001	01100010	01100011	
	< ×	4					×	-
ŀ	📑 mem 📑	🖥 mem (1)	h] ram_tb.v	J				< >

VHDL:

In the Transcript pane, you will see NUMERIC_STD warnings that can be ignored and an assertion failure that is functioning to stop the simulation. The simulation itself has not failed.

- 3. Change the address radix and the number of words per line for instance /ram_tb/spram1/mem.
 - a. Right-click anywhere in the Memory Contents pane and select Properties.
 - b. The Properties dialog box opens (Figure 10-4).

Properties	×
Address Radix	Data Radix
C Hexadecimal	 Symbolic
O Decimal	🔿 Binary
	O Octal
	O Decimal
	O Unsigned
	C Hexadecimal
Line Wrap O Fit in Wind O Words per	
!	<u>OK C</u> ancel

Figure 10-4. Changing the Address Radix

- c. For the **Address Radix, s**elect **Decimal**. This changes the radix for the addresses only.
- d. Select Words per line and type 1 in the field.
- e. Click OK.

You can see the results of the settings in Figure 10-5. If the figure doesn't match what you have in your ModelSim session, check to make sure you set the Address Radix rather than the Data Radix. Data Radix should still be set to Symbolic, the default.

📑 memory - /ra	am_tb/spram1/mem	+ P ×
0	00101000	
1	00101001	
2	00101010	
3	00101011	
4	00101100	
5	00101101	
6	00101110	
7	00101111	
8	00110000	
9	00110001	
 ▼ 		
🛛 🖪 mem 📑	mem (1) h ram_tb.v	

Figure 10-5. New Address Radix and Line Length

Navigate Within the Memory

You can navigate to specific memory address locations, or to locations containing particular data patterns. First, you will go to a specific address.

- 1. Use Goto to find a specific address.
 - a. Right-click anywhere in address column and select Goto (Figure 10-6).

The Goto dialog box opens in the data pane.

ſ	🛐 memory - /ra	am_tb/spram1/mem		+ * ×
	0 1 2 3 4 5 6 7 8	00101000 00101001 00101010 00101011 00101100 00101101	Goto: Memory X Goto Address 30 <u>DK</u> Cancel	-
	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00110001 mem (1) h rar	n_tb.v	• • «»

Figure 10-6. Goto Dialog

- b. Type **30** in the Goto Address field.
- c. Click OK.

The requested address appears in the top line of the window.

- 2. Edit the address location directly.
 - a. To quickly move to a particular address, do the following:
 - b. Double click address 38 in the address column.
 - c. Enter address 100 (Figure 10-7).

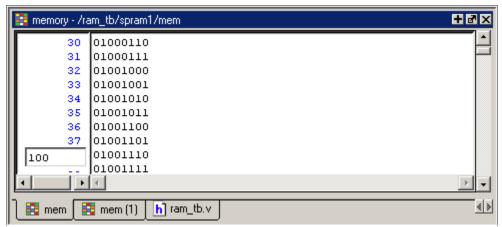


Figure 10-7. Editing the Address Directly

d. Press <Enter> on your keyboard.

The pane scrolls to that address.

- 3. Now, let's find a particular data entry.
 - a. Right-click anywhere in the data column and select Find.

The Find in dialog box opens (Figure 10-8).

Figure 10-8. Searching for a Specific Data Value

📑 memory -	/ram_	_tb/spram1/mem	_ [IX
File Edit Vie	ew Wi	ndow		
🚺 🏘 📲 Go	to: 30			ъ
		Find in /ram_tb/spram1/mem	×	
92	100			
93	100	Find Data	Find Next	-
94	100	Pattern: 11111010		
95	100		Replace	
96	100	Iglob (E.g. 1234, 101 011, *05?, 'hfa38)	Replace	
97	100	C regexp		
98	100		Replace All	
99	100		-	
100	100 100	Replace with:		
101	100	Find backwards	Close	
₹ ►				-
Address: deci	imal D	Data: symbolic		1.

b. Type **11111010** in the **Find data:** field and click **Find Next**.

The data scrolls to the first occurrence of that address. Click **Find Next** a few more times to search through the list.

c. Click **Close** to close the dialog box.

Export Memory Data to a File

You can save memory data to a file that can be loaded at some later point in simulation.

- 1. Export a memory pattern from the */ram_tb/spram1/mem* instance to a file.
 - a. Make sure */ram_tb/spram1/mem* is open and selected in the MDI frame.
 - b. Select **File > Export > Memory Data** to bring up the Export Memory dialog box (Figure 10-9).

Figure 10-9	. Export memo	bry Dialog					
Export Memory							
Instance Name							
/ram_tb/spram1/mem							
Address Range							
• All							
	 All Addresses (in decimal) 						
Start 0	End 409						
Start jo	Enu [403:	J					
File Format							
C Verilog Hex		No addresses					
C Verilog Binary							
• MTI							
Address Radix	Data Radix						
C Hexadecimal	C Symbolic						
O Decimal	Binary						
	C Octal						
	C Decimal						
	C Unsigned						
	C Hexadecimal						
		ļ					
Line Wrap							
C Fit in Wind	ow						
Words per	Line 1						
L							
File Save							
Filename data_mem.me	m	Browse					
		<u>O</u> K <u>Cancel</u>					

Figure 10-9. Export Memory Dialog

- c. For the Address Radix, select **Decimal**.
- d. For the Data Radix, select **Binary**.
- e. For the Line Wrap, set to 1 word per line.
- f. Type **data_mem.mem** into the Filename field.
- g. Click OK.

You can view the exported file in any editor.

Memory pattern files can be exported as relocatable files, simply by leaving out the address information. Relocatable memory files can be loaded anywhere in a memory because no addresses are specified.

- 2. Export a relocatable memory pattern file from the */ram_tb/spram2/mem* instance.
 - a. Select the **mem(1)** tab in the MDI pane to see the data for the */ram_tb/spram2/mem* instance.
 - b. Right-click on the memory contents to open a popup menu and select Properties.
 - c. In the Properties dialog, set the Address Radix to **Decimal**; the Data Radix to **Binary**; and the Line Wrap to 1 **Words per Line**. Click OK to accept the changes and close the dialog.
 - d. Select **File > Export > Memory Data** to bring up the Export Memory dialog box.
 - e. For the Address Range, specify a Start address of **0** and End address of **250**.
 - f. For the File Format, select **MTI** and click **No addresses** to create a memory pattern that you can use to relocate somewhere else in the memory, or in another memory.
 - g. For Address Radix select **Decimal**, and for Data Radix select **Binary**.
 - h. For the Line Wrap, set 1 Words per Line.
 - i. Enter the file name as **reloc.mem**, then click OK to save the memory contents and close the dialog. You will use this file for initialization in the next section.

Initialize a Memory

In ModelSim, it is possible to initialize a memory using one of three methods: from an exported memory file, from a fill pattern, or from both.

First, let's initialize a memory from a file only. You will use one you exported previously, *data_mem.mem*.

- 1. View instance /ram_tb/spram3/mem.
 - a. Double-click the */ram_tb/spram3/mem* instance in the Memories tab.

This will open a new tab - **mem**(2) - in the MDI frame to display the contents of $/ram_tb/spram3/mem$. Scan these contents so you can identify changes once the initialization is complete.

- b. Right-click and select **Properties** to bring up the Properties dialog.
- c. Change the Address Radix to **Decimal**, Data Radix to **Binary**, Line Wrap to 1 Words per Line, and click OK.
- 2. Initialize *spram3* from a file.
 - a. Right-click anywhere in the data column and select **Import** to bring up the Import Memory dialog box (Figure 10-10).

	. , , ,	
Import Memory		×
Instance Name		
/ram_tb/spram3/mem		
Load Type	Address Range	
File Only	C Addresses (in decimal)	
C Data Only		
O Both File and Data	Start 0 End 65535	
File Load		
File Format	🔲 Update Properties	
C Verilog Hex		
🔿 Verilog Bina	ry	
O MTI		
Specified in	File	
Filename		
data_mem.mem	Browse	
Data Load		
Fill Type	Fill Data	
Value		
C Increment		
C Decrement	Skip	
C Random	0 word(s)	
<u></u>		
	<u> </u>	el

Figure 10-10. Import Memory Dialog

The default Load Type is File Only.

- b. Type *data_mem.mem* in the Filename field.
- c. Click OK.

The addresses in instance */ram_tb/spram3/mem* are updated with the data from *data_mem.mem* (Figure 10-11).

📑 memory - /ra	am_tb/spram3/mem	+ * ×
244	000000000000000000000000000000000000000	<u> </u>
245	000000000000000000000000000000000000000	
246	000000000000000000000000000000000000000	
247	000000000000000000000000000000000000000	
248	000000000000000000000000000000000000000	
249	000000000000000000000000000000000000000	
250	000000000000000000000000000000000000000	
251	000000000000000000000000000000000000000	
252	000000000000000000000000000000000000000	
253	<u>]00</u> 0000000000000000000000000000000000	
 ✓ 		<u> </u>
mem 🚦	🖥 mem (1) 🛛 h ram_tb.v 🛛 🛐 mem (2)	<u></u>

In this next step, you will experiment with importing from both a file and a fill pattern. You will initialize *spram3* with the 250 addresses of data you exported previously into the relocatable file *reloc.mem*. You will also initialize 50 additional address entries with a fill pattern.

- 3. Import the */ram_tb/spram3/mem* instance with a relocatable memory pattern (*reloc.mem*) and a fill pattern.
 - a. Right-click in the data column of the **mem(2)** tab and select **Import** to bring up the Import Memory dialog box.
 - b. For Load Type, select **Both File and Data**.
 - c. For Address Range, select **Addresses** and enter **0** as the Start address and **300** as the End address.

This means that you will be loading the file from 0 to 300. However, the *reloc.mem* file contains only 251 addresses of data. Addresses 251 to 300 will be loaded with the fill data you specify next.

- d. For File Load, select the MTI File Format and enter **reloc.mem** in the Filename field.
- e. For Data Load, select a Fill Type of Increment.
- f. In the Fill Data field, set the seed value of **0** for the incrementing data.

- g. Click OK.
- h. View the data near address 250 by double-clicking on any address in the Address column and entering **250**.

You can see the specified range of addresses overwritten with the new data. Also, you can see the incrementing data beginning at address 251 (Figure 10-12).

Figure 10-12. Data Increments Starting at Address 251

📑 memory - /ra	📴 memory - /ram_tb/spram3/mem			
249	000000000000000000000000000000000000000	<u> </u>		
250	000000000000000000000000000000000000000			
251	000000000000000000000000000000000000000			
252	000000000000000000000000000000000000000			
253	000000000000000000000000000000000000000			
254	000000000000000000000000000000000000000			
255	000000000000000000000000000000000000000			
256	000000000000000000000000000000000000000			
257	000000000000000000000000000000000000000			
258	000000000000000000000000000000000000000			
Ⅰ ►	<u> </u>	▶ ▼		
📑 mem 🚦	🖥 mem (1) 🔄 h ram_tb.v 📑 mem (2)			

Now, before you leave this section, go ahead and clear the instances already being viewed.

4. Right-click somewhere in the mem(2) pane and select Close All.

Interactive Debugging Commands

The memory panes can also be used interactively for a variety of debugging purposes. The features described in this section are useful for this purpose.

- 1. Open a memory instance and change its display characteristics.
 - a. Double-click instance /ram_tb/dpram1/mem in the Memories tab.
 - b. Right-click in the memory contents pane and select Properties.
 - c. Change the Address and Data Radix to **Hexadecimal**.
 - d. Select Words per line and enter 2.
 - e. Click **OK**. The result should be as in Figure 10-13.

🔋 memory - /ra	am_tb/dpram1/mem	+ PX
00000000	06 03	<u>^</u>
00000002	7a lb	
00000004	lc ld	
00000006	le lf	
00000008	20 21	
0000000a	22 23	
000000c	24 25	
0000000e	26 27	
I P		
h ram_tb.v	🖪 mem	< >

Figure 10-13. Original Memory Content

- 2. Initialize a range of memory addresses from a fill pattern.
 - a. Right-click in the data column of */ram_tb/dpram1/mem* contents pane and select **Change** to open the Change Memory dialog (Figure 10-14).

Figure 10-14. Changing Memory Content for a Range of Addresses

Change Memory	×
Instance Name	
/ram_tb/dpram1/mem	
Address Range	Fill Type
O AI	C Value
 Addresses (in hexadecimal) 	C Increment
Start 0x0000006 End 0x0000009	C Decrement
	Random
Fill Data	Skip 0 word(s)
<u>K</u>	<u>Cancel Apply</u>

- b. Select Addresses and enter the start address as **0x00000006** and the end address as **0x00000009**. The "0x" hex notation is optional.
- c. Select Random as the Fill Type.
- d. Enter 0 as the Fill Data, setting the seed for the Random pattern.
- e. Click OK.

The data in the specified range are replaced with a generated random fill pattern (Figure 10-15).

📑 memory - /r/	am_tb/dpran	n1/mem	+ • ×
00000000	06 03		<u>^</u>
00000002	7a 1b		
00000004	1c 1d		
00000006	92 40		
00000008	04 31		
0000000a	22 23		
0000000c	24 25		
0000000e	26 27		
4	4		+ -
h ram_tb.v	📘 🖪 mem	<u></u>	< »

Figure 10-15. Random Content Generated for a Range of Addresses

3. Change contents by highlighting.

You can also change data by highlighting them in the Address Data pane.

a. Highlight the data for the addresses **0x0000000c:0x0000000e**, as shown in Figure 10-16.

Figure 10-16. Changing Memory Contents by Highlighting

🧾 memory - /ra	am_tb/dpram1/mem	+ Z ×
00000000	06 03	<u>^</u>
00000002	7a lb	
00000004	lc ld	
00000006	92 40	
00000008	04 31	
0000000a	22 23	
0000000c	24_25	
0000000e	26 27	
•		
h ram_tb.v	🛐 mem	< >

b. Right-click the highlighted data and select **Change**.

This brings up the Change memory dialog box (Figure 10-17). Note that the Addresses field is already populated with the range you highlighted.

Change Memory X Instance Name /ram_tb/dpram1/mem Address Range Fill Type: Value O All Increment Addresses (in hexadecimal) Decrement Start 0000000c End 0000000e Random Fill Data Skip 34 35 36 0 word(s) <u>0</u>K Cancel Apply

Figure 10-17. Entering Data to Change

- c. Select **Value** as the Fill Type.
- d. Enter the data values into the Fill Data field as follows: 34 35 36
- e. Click OK.

The data in the address locations change to the values you entered (Figure 10-18).

Figure 10-18. Changed Memory Contents for the Specified Addresses

📑 memory - /ra	am_tb/dpram1/mem	±∎×
00000000	06 03	<u>^</u>
00000002	7a lb	
00000004	lc ld	
00000006	92 40	
00000008	04 31	
0000000a	22 23	
000000c	34 35	
0000000e	36 27	
< F	T	Þ v
h ram_tb.v	📑 mem	<u>«</u> »

4. Edit data in place.

To edit only one value at a time, do the following:

- a. Double click any value in the Data column.
- b. Enter the desired value and press <Enter> on your keyboard.

If you needed to cancel the edit function, press the <Esc> key on your keyboard.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Select **Simulate > End Simulation**. Click Yes.

Chapter 11 Analyzing Performance With The Profiler

Introduction

The Profiler identifies the percentage of simulation time spent in each section of your code as well as the amount of memory allocated to each function and instance. With this information, you can identify bottlenecks and reduce simulation time by optimizing your code. Users have reported up to 75% reductions in simulation time after using the Profiler.

This lesson introduces the Profiler and shows you how to use the main Profiler commands to identify performance bottlenecks.

Note.

The functionality described in this tutorial requires a profile license feature in your ModelSim license file. Please contact your Mentor Graphics sales representative if you currently do not have such a feature.

Design Files for this Lesson

The example design for this lesson consists of a finite state machine which controls a behavioral memory. The testbench *test_sm* provides stimulus.

The ModelSim installation comes with Verilog and VHDL versions of this design. The files are located in the following directories:

Verilog – *<install_dir>/examples/tutorials/verilog/profiler*

VHDL – <*install_dir*>/*examples*/*tutorials*/*vhdl*/*profiler_sm_seq*

This lesson uses the Verilog version for the exercises. If you have a VHDL license, use the VHDL version instead.

Related Reading

User's Manual Chapters: Profiling Performance and Memory Use and Tcl and Macros (DO Files).

Compile and Load the Design

1. Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be working with these lessons). Create the directory and copy all files from <*install_dir>/examples/tutorials/verilog/profiler* to the new directory.

If you have a VHDL license, copy the files in <*install_dir>/examples/tutorials/vhdl/profiler_sm_seq* instead.

2. Start ModelSim and change to the exercise directory.

If you just finished the previous lesson, ModelSim should already be running. If not, start ModelSim.

a. Type vsim at a UNIX shell prompt or use the ModelSim icon in Windows.

If the Welcome to ModelSim dialog appears, click Close.

- b. Select **File > Change Directory** and change to the directory you created in step 1.
- 3. Create the work library.
 - a. Type **vlib work** at the ModelSim> prompt.
- 4. Compile the design files.
 - a. Verilog: Type vlog test_sm.v sm_seq.v sm.v beh_sram.v at the ModelSim> prompt.

VHDL: Type vcom -93 sm.vhd sm_seq.vhd sm_sram.vhd test_sm.vhd at the ModelSim> prompt.

- 5. Load the top-level design unit.
 - a. Enter **vsim -voptargs=''+acc'' test_sm** at the ModelSim> prompt of the Transcript pane.

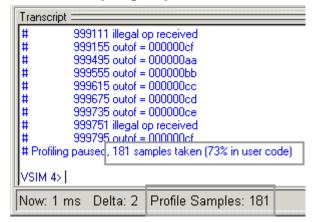
The **-voptargs="+acc"** argument for the vsim command provides visibility into the design for debugging purposes.

Note.

By default, ModelSim optimizations are performed on all designs (see Optimizing Designs with vopt).

Run the Simulation

You will now run the simulation and view the profiling data.


- 1. Enable the statistical sampling profiler.
 - a. Select **Tools > Profile > Performance** or click the **Performance Profiling** icon in the toolbar.

This must be done prior to running the simulation. ModelSim is now ready to collect performance data when the simulation is run.

- 2. Run the simulation.
 - a. Type **run 1 ms** at the VSIM> prompt.

Notice that the number of samples taken is displayed both in the Transcript and the Main window status bar (Figure 11-1). (Your results may not match those in the figure.) Also, ModelSim reports the percentage of samples that were taken in your design code (versus in internal simulator code).

Figure 11-1. Sampling Reported in the Transcript

- 3. Display the statistical performance data in the Profile pane.
 - a. Select **View > Profiling > Profile**.

The Profile pane (you may need to increase its size) displays three tab-selectable views of the data–Ranked, Call Tree, and Structural (Figure 11-2). (Your results may not match those in the figure.)

Name	Under(raw)	ln(raw)	Under(%)	ln(%)	
Tcl_Close	44	43	24.3%	23.8%	
test_sm.v:105	94	41	51.9%	22.7%	
Tcl_WaitForEvent	8	8	4.4%	4.4%	-
test_sm.v:92	7	7	3.9%	3.9%	
sm.v:73	13	6	7.2%	3.3%	
Tcl_GetTime	4	4	2.2%	2.2%	
beh_sram.v:22	4	4	2.2%	2.2%	
e l					×
 Ranked Call Tree	Structural				

Figure 11-2. The Profile Window

The table below gives a description of the columns in each tab. For more details on each pane, refer to the section Profile Panes in the User's Manual.

Column	Description
Under(raw)	the raw number of Profiler samples collected during the execution of a function, including all support routines under that function; or, the number of samples collected for an instance, including all instances beneath it in the structural hierarchy
In(raw)	the raw number of Profiler samples collected during a function or instance
Under(%)	the ratio (as a percentage) of the samples collected during the execution of a function and all support routines under that function to the total number of samples collected; or, the ratio of the samples collected during an instance, including all instances beneath it in the structural hierarchy, to the total number of samples collected
In(%)	the ratio (as a percentage) of the total samples collected during a function or instance
%Parent (not in the Ranked view)	the ratio (as a percentage) of the samples collected during the execution of a function or instance to the samples collected in the parent function or instance

Table 11-1. Columns in the Profile Window

Data in the Ranked view is sorted by default from highest to lowest percentage in the In(%) column. In the Call Tree and Structural views, data is sorted (by default) according to the Under(%) column. You can click the heading of any column to sort data by that column.

The "Tcl_*" entries are functions that are part of the internal simulation code. They are not directly related to your HDL code.

b. Click the **Call Tree** tab to view the profile data in a hierarchical, function-call tree display.

The results differ between the Verilog and VHDL versions of the design. In Verilog, line 105 (*test_sm.v:105*) is taking the majority of simulation time. In VHDL, *test_sm.vhd:203* and *sm.vhd:93* are taking the majority of the time.

Your results may look slightly different as a result of the computer you're using and different system calls that occur during the simulation. Also, the line number reported may be one or two lines off in the actual source file. This happens due to how the stacktrace is decoded on different platforms.

c. Verilog: Right-click *test_sm.v:105* and select Expand All from popup menu. This expands the hierarchy of *test_sm.v:105* and displays the functions that call it (Figure 11-3).

VHDL: Right-click *test_sm.vhd:203* and select **Expand All** from popup menu. This expands the hierarchy of *test_sm.vhd:203* and displays the functions that call it.

Profile					H	2
Name	Under(raw) In(raw)		Under(%)	ln(%)	%Parent].
⊟- test_sm.v:105	94	41	51.9%	22.7%	71%	
¢- Tcl_Flush	37	0	20.4%	0.0%	39%	
L Tcl_Close	37	36	20.4%	19.9%	100%	
É⊢ Tcl_DoOneEvent	15	1	8.3%	0.6%	16%	
 Tcl_WaitForEvent 	8	8	4.4%	4.4%	53%	
📥 Tcl_DeleteTimerHand	5	1	2.8%	0.6%	33%	
L Tcl_GetTime	4	4	2.2%	2.2%	80%	
E⊢ sm.v:73	13	6	7.2%	3.3%	10%	
由 Tcl_Flush	6	0	3.3%	0.0%	46%	
L Tcl_Close	6	6	3.3%	3.3%	100%	
test_sm.v:92	7	7	3.9%	3.9%	5%	
						ł
<u> </u>						1

Figure 11-3. Expand the Hierarchical Function Call Tree

- 4. View the source code of a line that is using a lot of simulation time.
 - a. **Verilog:** Double-click *test_sm.v:105*. The Source window opens in the MDI frame with line 105 displayed (Figure 11-4).

VHDL: Double-click *test_sm.vhd:203*. The Source window opens in the MDI frame with line 203 displayed.

Figure 11-4. The Source Window Showing a Line from the Profile Data

h C:/Tutorial/	examples/tutorials/verilog/profiler/test_sm.v 🛨 🗗 🔀
ln #	▲
102	always @(posedge clk)
103	outof = #5 out wire; // put output in register
104	
105	always @ (outof) // any change of outof
106	\$display (\$time,,"outof = %h",outof);
107	
108	integer i;
wave wave	h] test_sm.v

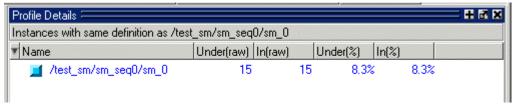
View Profile Details

The Profile Details pane increases visibility into simulation performance. Right-clicking any function in the Ranked or Call Tree views in the Profile pane opens a popup menu that includes a **Function Usage** selection. When you select **Function Usage**, the Profile Details pane opens and displays all instances that use the selected function.

- 1. View the Profile Details of a function in the Call Tree view.
 - a. Right-click the *Tcl_Close* function and select **Function Usage** from the popup menu.

The Profile Details pane displays all instances using function *Tcl_Close* (Figure 11-5). The statistical performance data show how much simulation time is used by *Tcl_Close* in each instance.

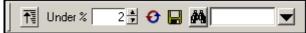
Instances using function: Tcl_Close				
Name	Under(raw) In(rav	v) Ur	nder(%) In((%)
🗾 /test_sm	37	36	20.4%	19.9%
🗾 /test_sm/sm_seq0/sm_0	7	7	3.9%	3.9%


Figure 11-5. Profile Details of the Function Tcl_Close

When you right-click a selected function or instance in the Structural pane, the popup menu displays either a Function Usage selection or an Instance Usage selection, depending on the object selected.

- 1. View the Profile Details of an instance in the Structural view.
 - a. Select the **Structural** tab to change to the Structural view.

- b. Right-click *test_sm* and select **Expand All** from the popup menu.
- c. **Verilog:** Right-click the *sm_0* instance and select **Instance Usage** from the popup menu. The Profile Details shows all instances with the same definition as */test_sm/sm_seq0/sm_0* (Figure 11-6).


VHDL: Right-click the *dut* instance and select **Instance Usage** from the popup menu. The Profile Details shows all instances with the same definition as */test_sm/dut*.

Filtering and Saving the Data

As a last step, you will filter out lines that take less than 2% of the simulation time using the Profiler toolbar, and then save the report data to a text file.

- 1. Filter lines that take less than 2% of the simulation time.
 - a. Click the Call Tree tab of the Profile pane.
 - b. Right-click somewhere in the pane and select Collapse All.
 - c. Change the **Under(%)** field to 2 (Figure 11-7).

If you do not see these toolbar buttons, right-click in a blank area of the toolbar and select Profile.

d. Click the **Refresh Profile Data** button.

ModelSim filters the list to show only those lines that take 2% or more of the simulation time (Figure 11-8).

Name	Under(raw)	In(raw)	Under(%)	ln(%)	%Parent
⊕- test_sm.v:105	94	41	51.9%	22.7%	71%
⊞– sm.v:73	13	6	7.2%	3.3%	10%
test_sm.v:92	7	7	3.9%	3.9%	5%
beh_sram.v:22	4	4	2.2%	2.2%	3%

Figure 11-8. The Filtered Profile Data

- 2. Save the report.
 - a. Click the save icon in the Profiler toolbar.
 - b. In the Profile Report dialog (Figure 11-9), select the **Call Tree** Type.

Profile Report	×
Type © Call Tree	Performance / Memory data
C Ranked	 Default (data collected)
C Structural	C Performance only
Root(opt):	Memory only
Include function call hierarchy	O Performance and memory
Specify structure level	
1 🚔	Cutoff percent
C Function to instance	
Function:	🔿 Default (0%)
C Instances using same definition	🖲 Specify 🛛 🗧 🛨
Instance:	
_ Output	
C Write to transcript	
Write to file calltree.rpt	Browse
View file	
	<u> </u>

Figure 11-9. The Profile Report Dialog

- c. In the Performance/Memory data section select **Default** (data collected).
- d. Specify the Cutoff percent as 2%.
- e. Select Write to file and type calltree.rpt in the file name field.
- f. View file is selected by default when you select Write to file. Leave it selected.
- g. Click OK.

The *calltree.rpt* report file will open automatically in Notepad (Figure 11-10).

Notepad						
File Edit Window						
📓 calltree.rpt						
Model Technology ModelSim S Platform: win32 Calltree profile generated Number of samples: 181 Number of samples in user c Cutoff percentage: 2%	Wed Dec 15 O	9:10:33 2		1.12 Dec	: 1 2004	
Name	Under (raw)	In(raw)	Under (%)	In(%)	%Parent	
 test sm.v:105	94	41	51.9	22.7	 71	
Tcl Flush	37					
Tcl_Close	37	36	20.4	19.9	100	
Tcl_DoOneEvent	15	1	8.3	0.6	16	
Tcl_WaitForEvent	8	8	4.4	4.4	53	
Tcl_DeleteTimerHandler	5	1	2.8	0.6	33	
Tcl_GetTime	4	4	2.2	2.2	80	
sm.v:73	13	6	7.2	3.3	10	
calltree.rpt						

Figure 11-10. The *calltree.rpt* Report

You can also output this report from the command line using the **profile report** command. See the *ModelSim Command Reference* for details.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

Select **Simulate > End Simulation**. Click Yes.

Chapter 12 Simulating With Code Coverage

Introduction

ModelSim Code Coverage gives you graphical and report file feedback on which executable statements, branches, conditions, and expressions in your source code have been executed. It also measures bits of logic that have been toggled during execution.

Note.

The functionality described in this lesson requires a coverage license feature in your ModelSim license file. Please contact your Mentor Graphics sales representative if you currently do not have such a feature.

Design Files for this Lesson

The sample design for this lesson consists of a finite state machine which controls a behavioral memory. The testbench *test_sm* provides stimulus.

The ModelSim installation comes with Verilog and VHDL versions of this design. The files are located in the following directories:

Verilog – *<install_dir>/examples/tutorials/verilog/coverage*

VHDL – <*install_dir*>/*examples*/*tutorials*/*vhdl*/*coverage*

This lesson uses the Verilog version in the examples. If you have a VHDL license, use the VHDL version instead. When necessary, we distinguish between the Verilog and VHDL versions of the design.

Related Reading

User's Manual Chapter: Code Coverage.

Compile the Design

Enabling Code Coverage is a two step process. First, you identify which coverage statistics you want and compile the design files. Second, you load the design and tell ModelSim to produce those statistics.

1. Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be working with these lessons). Create the directory and copy all files from <*install_dir>/modeltech/examples/tutorials/verilog/coverage* to the new directory.

If you have a VHDL license, copy the files in <*install_dir>/modeltech/examples/tutorials/vhdl/coverage* instead.

2. Start ModelSim and change to the exercise directory.

If you just finished the previous lesson, ModelSim should already be running. If not, start ModelSim.

a. Type **vsim** at a UNIX shell prompt or use the ModelSim icon in Windows.

If the Welcome to ModelSim dialog appears, click Close.

- b. Select **File > Change Directory** and change to the directory you created in step 1.
- 3. Create the working library.
 - a. Type **vlib work** at the ModelSim> prompt.
- 4. Compile the design files.
 - a. For Verilog Type vlog -cover bcsxf sm.v sm_seq.v beh_sram.v test_sm.v at the ModelSim> prompt.

For VHDL – Type vcom -cover bcsxf sm.vhd sm_seq.vhd sm_sram.vhd test_sm.vhd at the ModelSim> prompt.

The **-cover bcsxf** argument instructs ModelSim to collect branch, condition, statement, extended toggle, and finite state machine coverage statistics. Refer to the section **Enabling Code Coverage** in the User's Manual for more information on the available coverage types.

Load and Run the Design

- 1. Load the design.
 - a. Enter **vsim -voptargs="+acc" -coverage test_sm** at the ModelSim> prompt of the Transcript pane.

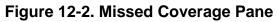
The **-voptargs="+acc"** argument for the vsim command provides visibility into the design for debugging purposes.

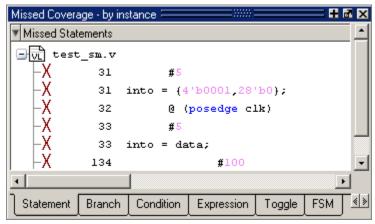
___Note_

By default, ModelSim optimizations are performed on all designs (see Optimizing Designs with vopt).

- 2. Run the simulation
 - a. Type **run 1 ms** at the VSIM> prompt.

When you load a design with Code Coverage enabled, ModelSim adds several columns to the Files and sim tabs in the Workspace (Figure 12-1). Your results may not match those shown in the figure.


Workspace 💳 🔤							
🔻 Filename	\triangle Fullpath	Туре	Stmt Count	Stmt Hits	Stmt %	Stmt Graph	Branch Cou
🖃 🛺 sim	vsim.wlf						
Sm.v	sm. v	verilog	22	19	86.364		
-vi sm_seq.v vi beh_sram.v vi test_sm.v	sm_seq.v	verilog	16	15	93.750		
- 🔂 beh_sram.v	beh_sram.v	verilog	6	5	83.333		
└─ <mark>─</mark> ↓ test_sm.v	test_sm.v	verilog	77	70	90.909]
•							Þ
Library 🗸 sin	n 📓 Files [Memorie	es				<.>


Figure 12-1. Code Coverage Columns in the Main Window Workspace

By default, ModelSim also displays three Code Coverage panes in the Main window:

• Missed Coverage

Displays the selected file's un-executed statements, branches, conditions, expressions and signals that have not toggled (Figure 12-2). It also includes missed states and transitions in finite state machines.

• Instance Coverage

Displays statement, branch, condition, expression and toggle coverage statistics for each instance in a flat, non-hierarchical view (Figure 12-3).

Ins	Instance Coverage -								
	Stmt %	Stmt graph	Branch count	Branch hits	Branch misses	Branch %	Branch graph	Con	
1	90%		8	7	1	87.5%]	
3	90%		20	17	3	85%]	
1	95.5%		14	13	1	92.9%]	
13	84.3%								
4								Þ	

Figure 12-3. Instance Coverage Pane

• Details

Shows coverage details for the item selected in the Missed Coverage pane. Details can include truth tables for conditions and expressions, or toggle details (Figure 12-4).

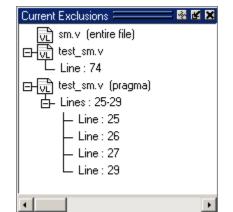

Details & X Instance: /test_sm Signal: into Node count: 32 ->0: 71870 ->1: 71876 Toggle Coverage: 34.38% 0/1 Coverage: 34.38% Full Coverage: 34.38% 2 Coverage: 34.38%

Figure 12-4. Details Pane

Another coverage-related pane is the Current Exclusions pane. Select **View > Coverage > Current Exclusions** to display that pane.

• Current Exclusions

Lists all files and lines that are excluded from coverage statistics (Figure 12-5). See Excluding Lines and Files from Coverage Statistics for more information.

Figure 12-5. Current Exclusions Pane

All coverage panes can be re-sized, rearranged, and undocked to make the data more easily viewable. To resize a pane, click-and-drag on the top or bottom border. To move a pane, click-and-drag on the double-line to the right of the pane name. To undock a pane you can select it then drag it out of the Main window, or you can click the Dock/Undock Pane button in the header bar (top right). To redock the pane, click the Dock/Undock Pane button again.

We will look at these panes more closely in the next exercise. For complete details on each pane, Refer to the section Code Coverage Panes in the User's Manual.

Coverage Statistics in the Main window

Let's take a look at the data in these various panes.

- 1. View statistics in the Workspace pane.
 - a. Select the **sim** tab in the Workspace and scroll to the right.

Coverage statistics are shown for each object in the design.

b. Select the **Files** tab in the Workspace and scroll to the right.

Each file in the design shows summary statistics for statements, branches, conditions, expressions, and states.

c. Click the right-mouse button on any column name and select an object from the list (Figure 12-6).

Workspace 💳							
Stmt Hits Stmt %	Stmt Graph	Branch Co	unt Branch Hits	Branch 🎗	6 Branch	Graph	Co
		19					
19 86.3	64] '	🖌 Туре	85.0	000		
15 93.7	50	j '	 Stmt Count 	92.3	857]
5 83.3	33	j '	 Stmt Hits 	90.1	000]
70 90.9	109	j '	🖌 Strnt %				_
		•	🖌 Stmt Graph				
•		·	 Branch Count 				
👖 Library 💈	🖳 sim 🛛 📓 File	s 🛐 N 👌	 Branch Hits 				
		Ľ <mark>Ľ ľ</mark>	🖌 Branch %				
la dana Cara		`	 Branch Graph 				
Instance Coverage			 Condition Count 		t Stmthits	Charlenia	
Instance		ign unit	 Condition Hits 	oun			_
🗾 /test_sm	test_		 Condition % 	7			1
/test_sm/s		seq .	 Condition Graph 				
	sm_seq0/s sm	•	 Expression Cou 				-
🗾 /test_sm/s	sram_U behj	_sram	 Expression Hits 		65		
		•	 Expression % 				
•		· ·	 Expression Gra 	ph 🚽			
<u> </u>		- ·	 States Count 				
Objects =====		<u> </u>	 States Hits 				
Name	V	alue	🖌 States %	3	1H->0L 0	L->1H ()L->
🖅 🔶 into	00	0000000	🖌 States Graph	hal	71870	71876	
🛨 🔶 outof	00	0000000	 Transitions Cou 	int hal	12493	12499	
🔶 rst	0		 Transitions Hits 	hal	2	1	
🔶 clk	0		🖌 Transitions % 🛛	hal	50000	50000	
н 🔶 out_wire	00	0000000	 Transitions Gra 	ph nal	12493	12499	
🖅 🔶 dat	00	000000000000000000000000000000000000000	Net	Internal	14055	17186	37

Figure 12-6. Right-click a Column Heading to Hide or Show Columns

All checked columns are displayed. Unchecked columns are hidden. The status of every column, whether displayed or hidden, is persistent between invocations of ModelSim.

- 2. View statistics in the Missed Coverage pane (see Figure 12-2 above).
 - a. Select different files from the Files tab of the Workspace. The Missed Coverage pane updates to show statistics for the selected file.
 - b. Select any entry in the Statement tab to display that line in the Source window.
- 3. View statistics in the Details pane.
 - a. Select the Toggle tab in the Missed Coverage pane.

If the Toggle tab isn't visible, you can do one of two things: 1) widen the pane by clicking-and-dragging on the pane border; 2) if your mouse has a middle button, click-and-drag the tabs with the middle mouse button.

- b. Select any object in the Toggle tab to see details in the Details pane (see Figure 12-4 above).
- 4. View instance coverage statistics.

The Instance Coverage pane displays coverage statistics for each instance in a flat, nonhierarchical view (see Figure 12-3 above). Select any instance in the Instance Coverage pane to see its source code displayed in the Source window.

Coverage Statistics in the Source Window

In the previous section you saw that the Source window and the Main window coverage panes are linked. You can select objects in the Main window panes to view the underlying source code in the Source window. Furthermore, the Source window contains statistics of its own.

- 1. View coverage statistics for *test_sm* in the Source window.
 - a. Make sure *test_sm* is selected in the **sim** tab of the Workspace.

In the Statement tab of the Missed Coverage pane, expand *test_sm.v* if necessary and select any line.

b. The Source window opens in the MDI frame with the line you selected highlighted (Figure 12-7).

Figure 12-7.	Coverage	Statistics	in the	Source	Window
i iguio in in	oovorugo	otatiotioo		000100	

h C:/modeltech/examples/covera	age/verilog/test_sm.v
Hits BC ln #	¥
30 X 31 X 32 X 33	<pre>begin #5 into = {4'b0001,28'b0}; // ctrl_word @ (posedge clk) #5 into = data;</pre>
34 h) beh_sram.v h) sm.v h)	end I sm_seq.v h] test_sm.v

c. Switch to the Source window.

The table below describes the various icons.

Table 12-1. Coverage Icons in the Source Window

Icon	Description
green checkmark	indicates a statement that has been executed

Icon	Description
red X	indicates that a statement in that line has not been executed (zero hits)
green E	indicates a line that has been excluded from code coverage statistics
red X_T or X_F	indicates that a true or false branch (respectively) of a conditional statement has not been executed

Table 12-1. Coverage Icons in the Source Window

d. Hover your mouse pointer over a line of executable code with a green checkmark in the Hits or BC columns.

The icons change to numbers that indicate how many times the statements and branches in that line were executed (Figure 12-8).

Figure 12-8. Coverage Numbers Shown by Hovering the Mouse Pointer

h C:/Tutorial	/examples/tutorials/verilog/c	overage/beł	n_sram.v	+ 7
Hits	BC	ln #		
		21	<pre>reg [31:0] dat_r;</pre>	
28119	9375t 18744f	22	tri[[31:0] dat = rd_ ? 32'bZ :	dat
		23	~	
		24	initial begin	
 ✓ 		25	$dat_r = 0;$	
		26	end	
				F
h test_sm.	v h beh_sram.v			

In this case, the statement in line 22 was executed 28,119 times, the true branch of the condition in this line executed 9,375 times, and the false branch executed 18,744 times.

e. Select Tools > Code Coverage > Show coverage numbers.

The icons are replaced by execution counts on every line. An ellipsis (...) is displayed whenever there are multiple statements on the line. Hover the mouse pointer over a statement to see the count for that statement.

f. Select **Tools > Code Coverage > Show coverage numbers** again to uncheck the selection and return to icon display.

Toggle Statistics in the Objects Pane

Toggle coverage counts each time a logic node transitions from one state to another. Earlier in the lesson you enabled six-state toggle coverage by using the **-cover x** argument with the vlog or vcom command. Refer to the section Toggle Coverage in the User's Manual for more information.

- 1. View toggle data in the Objects pane of the Main window.
 - a. Select *test_sm* in the sim tab of the Main window.
 - b. If the Objects pane isn't open already, select View > Objects. Scroll to the right to see the various toggle coverage columns, or undock and expand the pane until all columns show (Figure 12-9).

Ob	jects													
File	Edit View	Add 1	Tools Window											
Objec	its 💳													
] Co	intains:		0/	# 1 ⊞ [Ъ									
🔻 Nar	ne	Value	Kind	Mode	1H->0L	0L->1H	0L->Z 2	Z->0L	1H->Z	Z->1H	#Nodes	#Toggled	% Toggled	% 01
	into	0000	Packed Array	Internal	71870	71876	0	0	0	0) 32	11	34.38%	34
	outof	0000	Packed Array	Internal	12493	12499	0	0	0	0) 32	6	18.75%	21.
- 🔶	rst	0	Packed Array	Internal	2	1	0	0	0	0) 1	1	100%	1
- 🔶	clk	0	Packed Array	Internal	50000	50000	0	0	0	0) 1	1	100%	1
H	out_wire	0000	Net	Internal	12493	12499	0	0	0	0) 32	6	18.75%	21.
	dat	0000	Net	Internal	14055	17186	378058	381216	71862	68736	; 32	6	18.75%	21.
	addr	0000	Net	Internal	15621	15624	0	0	0	0	ı 10	4	40%	
	loop	xxxxxx	. Packed Array	Internal	0	0	0	0	0	0) 32	0	0%	
- 🔶			Packed Array	Internal	0	0	0	0	0	0) 32	0	0%	
- 🔶	_br	St1	Net	Internal	9372	9372	0	0	0	0	1	1	100%	1
-	wr_	StO	Net	Internal	4689	4688	0	0	0	0) 1	1	100%	1

Figure 12-9. Toggle Coverage in the Objects Pane

Excluding Lines and Files from Coverage Statistics

ModelSim allows you to exclude lines and files from code coverage statistics. You can set exclusions with the GUI, with a text file called an "exclusion filter file", or with "pragmas" in your source code. Pragmas are statements that instruct ModelSim to not collect statistics for the bracketed code. Refer to the section Excluding Objects from Coverage in the User's Manual for more details on exclusion filter files and pragmas.

- 1. Display the Current Exclusions pane if necessary.
 - a. Select View > Coverage > Current Exclusions.
- 2. Exclude a line via the Missed Coverage pane.

- a. Right click a line in the Missed Coverage pane and select **Exclude Selection**. (You can also exclude the selection for the current instance only by selecting Exclude Selection For Instance <inst_name>.) The line will appear in the Current Exclusions pane.
- 3. Exclude an entire file.
 - a. In the Files tab of the Workspace, locate *sm.v* (or *sm.vhd* if you are using the VHDL example).
 - b. Right-click the file name and select **Code Coverage > Exclude Selected File** (Figure 12-10).

Workspace =							- # # X
🔻 Filename		Fullpath	Туре	Stmt Count	Stmt Hits	Stmt %	Stmt Graph
VL sm_se	eq.v	sm_seq.v	.v file	21	20	95.238	
VL SM.V		sm. v	.v file	28	25	89.286	
VL be	View Source	beh_sra	.v file	9	8	88.889	
vi te:	Save List	test sm.v	.v file		73	90.123	
	Code Coverage 🕨	Code Co	overage F	Reports			
	Сору	4	Selected				
	Properties	Clear Co	ide Cove	rage Data			
•							Þ
Library	😺 sim 📓 File:	s					<u></u>

Figure 12-10. Excluding a File Using Menus in the Workspace

The file is added to the Current Exclusions pane.

- 4. Cancel the exclusion of *sm.v*.
 - a. Right-click *sm.v* in the Current Exclusions pane and select **Cancel Selected Exclusions**.

Creating Code Coverage Reports

You can create reports on the coverage statistics using either the menus or by entering commands in the Transcript pane. The reports are output to a text file regardless of which method you use.

To create coverage reports via the menus, do one of the following:

- select Tools > Code Coverage Report > Text from the Main window menu
- right-click any object in the **sim** or **Files** tab of the Workspace and select **Code Coverage** > **Code Coverage Reports**

- right-click any object in the Instance Coverage pane and select **Code coverage reports** from the context menu
- 1. Create a report on all instances.
 - a. Select **Tools > Coverage Reports > Text** from the Main window toolbar.

This opens the Coverage Report dialog (Figure 12-11).

Coverage Text Report	
Report kind	
Report on All instances	
DU Name	Browse
File Name	Browse
Instance Name	Browse
🗖 Recursive 🗖 Depth	
Verbosity	Coverage Type
• Default	Assertions
totals per instance/DU/file	Covergroups
O Details	Cover directives
All Toggles	Code coverage
Condition/Expression Tables	All code coverage
Covergroup Options	🔽 Branches
Source Annotation	Conditions
C Total Coverage	Expressions
Output Mode	✓ Statements
Cathat Mode	Fsms
🗖 XML Format	✓ Toggles
Report Pathname	
report.txt	Browse
Append to file	
Advanced Options	OK Cancel

Figure 12-11. Coverage Report Dialog

b. Make sure **Report on all instances** is selected and then click OK.

ModelSim creates a file *report.txt* in the current directory and displays the report in Notepad.

- c. Close Notepad when you have finished viewing the report.
- 2. Create a summary report on all design files from the Transcript pane.

- a. Type **coverage report -file cover.txt** at the VSIM> prompt.
- b. Type **notepad cover.txt** at the VSIM> prompt to view the report.
- c. Close Notepad when you have finished viewing the report.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation.

1. Type **quit -sim** at the VSIM> prompt.

Introduction

Waveform Compare computes timing differences between test signals and reference signals. The general procedure for comparing waveforms has four main steps:

- 1. Select the simulations or datasets to compare
- 2. Specify the signals or regions to compare
- 3. Run the comparison
- 4. View the comparison results

In this exercise you will run and save a simulation, edit one of the source files, run the simulation again, and finally compare the two runs.

Note _

The functionality described in this tutorial requires a compare license feature in your ModelSim license file. Please contact your Mentor Graphics sales representative if you currently do not have such a feature.

Design Files for this Lesson

The sample design for this lesson consists of a finite state machine which controls a behavioral memory. The testbench *test_sm* provides stimulus.

The ModelSim installation comes with Verilog and VHDL versions of this design. The files are located in the following directories:

Verilog – *<install_dir>/examples/tutorials/verilog/compare*

VHDL – <*install_dir*>/*examples*/*tutorials*/*vhdl*/*compare*

This lesson uses the Verilog version in the examples. If you have a VHDL license, use the VHDL version instead. When necessary, we distinguish between the Verilog and VHDL versions of the design.

Related Reading

User's Manual sections: Waveform Compare and Recording Simulation Results With Datasets.

Creating the Reference Dataset

The reference dataset is the *.wlf* file that the test dataset will be compared against. It can be a saved dataset, the current simulation dataset, or any part of the current simulation dataset.

In this exercise you will use a DO file to create the reference dataset.

1. Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise (in case other users will be working with these lessons). Create the directory and copy all files from <*install_dir>/modeltech/examples/tutorials/verilog/compare* to the new directory.

If you have a VHDL license, copy the files in <*install_dir>/modeltech/examples/tutorials/vhdl/compare* instead.

2. Start ModelSim and change to the exercise directory.

If you just finished the previous lesson, ModelSim should already be running. If not, start ModelSim.

a. Type vsim at a UNIX shell prompt or use the ModelSim icon in Windows.

If the Welcome to ModelSim dialog appears, click Close.

- b. Select **File > Change Directory** and change to the directory you created in step 1.
- 3. Execute the lesson DO file.
 - a. Type **do gold_sim.do** at the ModelSim> prompt.

The DO file does the following:

- Creates and maps the work library
- Compiles the Verilog and VHDL files
- Loads the simulator with optimizations turned off (vsim -novopt)
- Runs the simulation and saves the results to a dataset named *gold.wlf*
- Quits the simulation

Feel free to open the DO file and look at its contents.

Creating the Test Dataset

The test dataset is the *.wlf* file that will be compared against the reference dataset. Like the reference dataset, the test dataset can be a saved dataset, the current simulation dataset, or any part of the current simulation dataset.

To simplify matters, you will create the test dataset from the simulation you just ran. However, you will edit the testbench to create differences between the two runs.

Verilog

- 1. Edit the testbench.
 - a. Select **File > Open** and open *test_sm.v*.
 - b. Scroll to line 122, which looks like this:
 - @ (posedge clk) wt_wd('h10,'haa);
 - c. Change the data pattern 'aa' to 'ab':
 - @ (posedge clk) wt_wd('h10,'hab);
 - d. Select **File > Save** to save the file.
- 2. Compile the revised file and rerun the simulation.
 - a. Type **do sec_sim.do** at the ModelSim> prompt.

The DO file does the following:

- Re-compiles the testbench
- Adds waves to the Wave window
- Loads the simulator with optimizations turned off (**vsim -novopt**)
- Runs the simulation

VHDL

- 1. Edit the testbench.
 - a. Select **File > Open** and open *test_sm.vhd*.
 - b. Scroll to line 151, which looks like this: wt_wd (16#10#, 16#aa#, clk, into);
 - c. Change the data pattern 'aa' to 'ab':

```
wt_wd ( 16#10#, 16#ab#, clk, into );
```

- d. Select **File > Save** to save the file.
- 2. Compile the revised file and rerun the simulation.
 - a. Type do sec_sim.do at the ModelSim> prompt.The DO file does the following:
 - Re-compiles the testbench

- Adds waves to the Wave window
- Loads the simulator with optimizations turned off (vsim -novopt)
- Runs the simulation

Comparing the Simulation Runs

ModelSim includes a Comparison Wizard that walks you through the process. You can also configure the comparison manually with menu or command line commands.

- 1. Create a comparison using the Comparison Wizard.
 - a. Select Tools > Waveform Compare > Comparison Wizard.
 - b. Click the **Browse** button and select *gold.wlf* as the reference dataset (Figure 13-1). Recall that *gold.wlf* is from the first simulation run.

Figure 13-1. First dialog of the Waveform Comparison Wizard

Comparison Wizard			
The first step in creating a comparison is to open the reference and test datasets (.wlf files). Either dataset can be a saved .wlf file	Reference Dataset	- •	Browse
or a dataset that is already opened.			
Use the Browse buttons to browse for	Test Dataset		
a saved dataset, or click the down arrow to select a file from the dataset	Use Current Simulation		
selection history.	Update comparison after each run		

- c. Leaving the test dataset set to Use Current Simulation, click Next.
- d. Select Compare All Signals in the second dialog (Figure 13-2) and click Next.

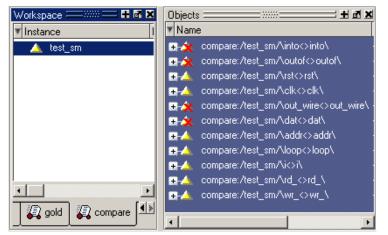
Figure 13-2. Second dialog of the Waveform Comparison Wizard

Comparison Wizard		
With the reference and test datasets selected, the next step is to select a comparison method.	Comparison Method	
Compare All Signals - compares all	Compare All Signals	
signals in the test dataset against the signals in the reference dataset.	C Compare Top Level Ports	
Compare Top Level Ports - compares the top level ports of the selected	C Specify Comparison by Signal	
datasets.	C Specify Comparison by Region	
Caracity Comparison by Circul Comm		

e. In the next three dialogs, click **Next**, **Compute Differences Now**, and **Finish**, respectively.

ModelSim performs the comparison and displays the compared signals in the Wave window.

Viewing Comparison Data


Comparison data is displayed in the Workspace, Transcript, Objects, Wave and List window panes. Compare objects are denoted by a yellow triangle.

The Compare tab in the Workspace pane shows the region that was compared;

The Transcript pane shows the number of differences found between the reference and test datasets;

The Objects pane shows comparison differences when you select the comparison object in the Compare tab of the Workspace (Figure 13-3).

Figure 13-3. Comparison information in the Workspace and Objects panes

Comparison Data in the Wave Window

The Wave window displays comparison information as follows:

• timing differences are denoted by a red X's in the pathnames column (Figure 13-4),

💼 wave - default			÷∎×
Intest_sm/rd_	St1		
🥠 sim:/test_sm/wr_	St1		
	-No Data-		
	-No Data-		
	-No Data-		
⊕ compare:/test_sm/\	-No Data-		
Now	750000 ps	458800 ps	45
Cursor 1	0 ps		
est_sm.v			« »

Figure 13-4. Comparison objects in the Wave window

- red areas in the waveform view show the location of the timing differences,
- red lines in the scrollbars also show the location of timing differences,
- and, annotated differences are highlighted in blue.

The Wave window includes six compare icons that let you quickly jump between differences (Figure 13-5).

Figure 13-5. The compare icons

From left to right, the icons do the following: find first difference, find previous annotated difference, find previous difference, find next difference, find next annotated difference, find last difference. Use these icons to move the selected cursor.

The compare icons cycle through differences on all signals. To view differences in only a selected signal, use <tab> and <shift> - <tab>.

Comparison Data in the List Window

You can also view the results of your waveform comparison in the List window.

1. Add comparison data to the List window.

- a. Select **View > List** from the Main window menu bar.
- b. Drag the *test_sm* comparison object from the compare tab of the Main window to the List window.
- c. Scroll down the window.

Differences are noted with yellow highlighting (Figure 13-6). Differences that have been annotated have red highlighting.

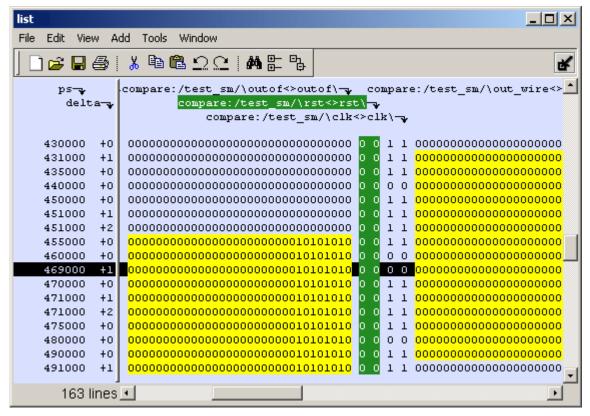


Figure 13-6. Compare differences in the List window

Saving and Reloading Comparison Data

You can save comparison data for later viewing, either in a text file or in files that can be reloaded into ModelSim.

To save comparison data so it can be reloaded into ModelSim, you must save two files. First, you save the computed differences to one file; next, you save the comparison configuration rules to a separate file. When you reload the data, you must have the reference dataset open.

- 1. Save the comparison data to a text file.
 - a. In the Main window, select Tools > Waveform Compare > Differences > Write Report.

b. Click Save.

This saves *compare.txt* to the current directory.

c. Type **notepad compare.txt** at the VSIM> prompt to display the report (Figure 13-7).

Figure 13-7. Coverage data saved to a text file

Notepad	
File Edit Window	
📓 compare.txt	_ 8
Total signals compared = 11	
Total primary differences = 6	
Total secondary differences = 6	
Number of primary signals with differences = 4	
Diff number 1, From time 135 ns delta O to time 155 ns delta O.	
gold:/test_sm/into = 00000000000000000000000000000000000	
sim:/test_sm/into = 00000000000000000000000000000000000	
Diff number 2, From time 135 ns delta O to time 155 ns delta O.	
gold:/test_sm/into[0] = 0	
sim:/test_sm/into[0] = 1	
Diff number 3, From time 171 ns delta 1 to time 191 ns delta 1.	
gold:/test_sm/dat = 00000000000000000000000000000000000	
sim:/test_sm/dat = 00000000000000000000000000000000000	
Diff number 4, From time 171 ns delta 1 to time 191 ns delta 1.	
gold:/test_sm/dat[0] = St0	
sim:/test_sm/dat[0] = St1	
Diff number 5, From time 409 ns delta 1 to time 411 ns delta 2.	
gold:/test_sm/dat = 00000000000000000000000000000000000	
sim:/test_sm/dat = 00000000000000000000000000000000000	
Diff number 6, From time 409 ns delta 1 to time 411 ns delta 2.	
gold:/test_sm/dat[0] = St0	
sim:/test_sm/dat[0] = St1	
Diff number 7, From time 431 ns delta 1 to time 491 ns delta 1.	
2014//test_am/out_vive00000000000000000000000010101010	

- d. Close Notepad when you have finished viewing the report.
- 2. Save the comparison data in files that can be reloaded into ModelSim.
 - a. Select Tools > Waveform Compare > Differences > Save.
 - b. Click Save.

This saves *compare.dif* to the current directory.

- c. Select Tools > Waveform Compare > Rules > Save.
- d. Click Save.

This saves *compare.rul* to the current directory.

122

- e. Select Tools > Waveform Compare > End Comparison.
- 3. Reload the comparison data.
 - a. With the sim tab of the Workspace active, select **File > Open**.
 - b. Change the Files of Type to Log Files (*.wlf) (Figure 13-8).

Figure 13-8. Displaying Log Files in the Open dialog

	1			
My Network	File name:		•	Open
Places	Files of type:	Log Files (*.wlf)		Cancel

- c. Double-click *gold.wlf* to open the dataset.
- d. Select **Tools > Waveform Compare > Reload**.

Since you saved the data using default file names, the dialog should already have the correct Waveform Rules and Waveform Difference files specified (Figure 13-9).

	•	
Reload and Redisplay Compare Different	ences	_ 🗆 🗙
Waveform Rules file name		
compare.rul		Browse
Waveform Difference file name		
compare.dif		Browse
	<u>0</u> K	<u>C</u> ancel

Figure 13-9. Reloading saved comparison data

e. Click OK.

The comparison reloads. You can drag the comparison object to the Wave or List window to view the differences again.

Lesson Wrap-Up

This concludes this lesson. Before continuing we need to end the current simulation and close the *gold.wlf* dataset.

- 1. Type **quit -sim** at the VSIM> prompt.
- 2. Type **dataset close gold** at the ModelSim> prompt.

Introduction

Aside from executing a couple of pre-existing DO files, the previous lessons focused on using ModelSim in interactive mode: executing single commands, one after another, via the GUI menus or Main window command line. In situations where you have repetitive tasks to complete, you can increase your productivity with DO files.

DO files are scripts that allow you to execute many commands at once. The scripts can be as simple as a series of ModelSim commands with associated arguments, or they can be full-blown Tcl programs with variables, conditional execution, and so forth. You can execute DO files from within the GUI or you can run them from the system command prompt without ever invoking the GUI.

This lesson assumes that you have added the *<install_dir>/modeltech/<platform>* directory to your PATH. If you did not, you will need to specify full paths to the tools (i.e., vlib, vmap, vlog, vcom, and vsim) that are used in the lesson.

Related Reading

User's Manual Chapter: Tcl and Macros (DO Files).

Practical Programming in Tcl and Tk, Brent B. Welch, Copyright 1997

Creating a Simple DO File

Creating DO files is as simple as typing the commands in a text file. Alternatively, you can save the Main window transcript as a DO file. In this exercise, you will use the commands you enter in the Main window transcript to create a DO file that adds signals to the Wave window, provides stimulus to those signals, and then advances the simulation.

- 1. Load the *test_counter* design unit.
 - a. If necessary, start ModelSim.
 - b. Change to the directory you created in Lesson 2.
 - c. In the Library tab of the Workspace pane, double-click the *test_counter* design unit to load it.

- 2. Enter commands to add signals to the Wave window, force signals, and run the simulation.
 - a. Select **File > New > Source > Do** to create a new DO file.
 - b. Enter the following commands into the source window:

```
add wave count
add wave clk
add wave reset
force -freeze clk 0 0, 1 {50 ns} -r 100
force reset 1
run 100
force reset 0
run 300
force reset 1
run 400
force reset 0
run 200
```

- 3. Save the file.
 - a. Select **File > Save As**.
 - b. Type **sim.do** in the File name: field and save it to the current directory.
- 4. Load the simulation again and use the DO file.
 - a. Enter **quit -sim** at the VSIM> prompt.
 - b. Enter **vsim -voptargs="+acc" test_counter** at the ModelSim> prompt.

The **-voptargs="+acc"** argument for the vsim command provides visibility into the design for debugging purposes.

Note ____

By default, ModelSim optimizations are performed on all designs (see Optimizing Designs with vopt).

c. Enter **do sim.do** at the VSIM> prompt.

ModelSim executes the saved commands and draws the waves in the Wave window.

5. When you are done with this exercise, select **File > Quit** to quit ModelSim.

Running in Command-Line Mode

We use the term "command-line mode" to refer to simulations that are run from a DOS/ UNIX prompt without invoking the GUI. Several ModelSim commands (e.g., vsim, vlib, vlog, etc.) are actually stand-alone executables that can be invoked at the system command prompt. Additionally, you can create a DO file that contains other ModelSim commands and specify that file when you invoke the simulator.

1. Create a new directory and copy the tutorial files into it.

Start by creating a new directory for this exercise. Create the directory and copy the following files into it:

- /<install_dir>/examples/tutorials/verilog/automation/counter.v
- /<install_dir>/examples/tutorials/verilog/automation/stim.do

This lesson uses the Verilog file *counter.v.* If you have a VHDL license, use *the counter.vhd* and *stim.do* files in the /<*install_dir>/examples/tutorials/vhdl/automation* directory instead.

2. Create a new design library and compile the source file.

Again, enter these commands at a DOS/ UNIX prompt in the new directory you created in step 1.

- a. Type vlib work at the DOS/ UNIX prompt.
- b. For Verilog, type **vlog counter.v** at the DOS/ UNIX prompt. For VHDL, type **vcom counter.vhd**.
- 3. Create a DO file.
 - a. Open a text editor.
 - b. Type the following lines into a new file:

list all signals in decimal format add list -decimal * # read in stimulus do stim.do # output results write list counter.lst # quit the simulation quit -f

- c. Save the file with the name *sim.do* and place it in the current directory.
- 4. Run the batch-mode simulation.
 - a. Type vsim -voptargs=''+acc''-c -do sim.do counter -wlf counter.wlf at the DOS/ UNIX prompt.

The **-c** argument instructs ModelSim not to invoke the GUI. The **-wlf** argument saves the simulation results in a WLF file. This allows you to view the simulation results in the GUI for debugging purposes.

5. View the list output.

a. Open *counter.lst* and view the simulation results. Output produced by the Verilog version of the design should look like the following:

ns do	lta	/counter/count /counter/clk			
ueila					
		/counter/reset			
0	+0	x z *			
1	+0	0 z *			
50	+0	0 * *			
100	+0	0 0 *			
100	+1	0 0 0			
150	+0	0 * 0			
151	+0	1 * 0			
200	+0	1 0 0			
250	+0	1 * 0			
•					

The output may appear slightly different if you used the VHDL version.

6. View the results in the GUI.

Since you saved the simulation results in *counter.wlf*, you can view them in the GUI by invoking VSIM with the **-view** argument.

Note _

Make sure your PATH environment variable is set with the current version of ModelSim at the front of the string.

a. Type vsim -view counter.wlf at the DOS/ UNIX prompt.

The GUI opens and a dataset tab named "counter" is displayed in the Workspace (Figure 14-1).

Figure 14-1. A Dataset in the Main Window Workspace

Workspace		
Workspace 🥅		🛛 🖉 🖾 🗙
▼ Instance	Design unit	Design unit ty
🧾 counter	counter	Module
		•
Library Counter		<u>«</u> »

b. Right-click the *counter* instance and select **Add** > **Add to Wave**.

The waveforms display in the Wave window.

7. When you finish viewing the results, select **File > Quit** to close ModelSim.

Using Tcl with the Simulator

The DO files used in previous exercises contained only ModelSim commands. However, DO files are really just Tcl scripts. This means you can include a whole variety of Tcl constructs such as procedures, conditional operators, math and trig functions, regular expressions, and so forth.

In this exercise, you create a simple Tcl script that tests for certain values on a signal and then adds bookmarks that zoom the Wave window when that value exists. Bookmarks allow you to save a particular zoom range and scroll position in the Wave window. The Tcl script also creates buttons in the Main window that call these bookmarks.

- 1. Create the script.
 - a. In a text editor, open a new file and enter the following lines:

```
proc add_wave_zoom {stime num} {
  echo "Bookmarking wave $num"
  bookmark add wave "bk$num" "[expr $stime - 50] [expr $stime +
100]" 0
  add button "$num" [list bookmark goto wave bk$num]
}
These commands do the following:
```

These commands do the following:

- Create a new procedure called "add_wave_zoom" that has two arguments, *stime* and *num*.
- Create a bookmark with a zoom range from the current simulation time minus 50 time units to the current simulation time plus 100 time units.
- Add a button to the Main window that calls the bookmark.
- b. Now add these lines to the bottom of the script:

```
add wave -r /*
when {clk'event and clk="1"} {
    echo "Count is [exa count]"
    if {[exa count]== "00100111"} {
        add_wave_zoom $now 1
    } elseif {[exa count]== "01000111"} {
        add_wave_zoom $now 2
    }
}
```

These commands do the following:

• Add all signals to the Wave window.

- Use a **when** statement to identify when *clk* transitions to 1.
- Examine the value of *count* at those transitions and add a bookmark if it is a certain value.
- c. Save the script with the name "*add_bkmrk.do*."

Save it into the directory you created in Basic Simulation.

- 2. Load the *test_counter* design unit.
 - a. Start ModelSim.
 - b. Select **File > Change Directory** and change to the directory you saved the DO file to in step 1c above.
 - c. Enter the following command at the QuestaSim> prompt:

vsim -voptargs="+acc" test_counter

- 3. Execute the DO file and run the design.
 - a. Type **do add_bkmrk.do** at the VSIM> prompt.
 - b. Type **run 1500 ns** at the VSIM> prompt.

The simulation runs and the DO file creates two bookmarks.

It also creates buttons (labeled "1" and "2") on the Main window toolbar that jump to the bookmarks (Figure 14-2).

Figure 14-2. Buttons Added to the Main Window Toolbar

orkspace 🦳			Objects	
Instance	Design unit	Design uni	▼ Name	Value
	test_counter	Module	🔷 clk	0
ģ ⊢_ ⊒ dut	counter	Module	🔷 🔶 reset	0
	test_counter	Process	count	01001011
- #IMPLICIT-WIRE(clk)	test_counter	Process		
	test_counter	Process		
	test_counter	Process		
L #INITIAL#30	test_counter	Process		
-				
		1100000		

c. Click the buttons and watch the Wave window zoom on and scroll to the time when *count* is the value specified in the DO file.

Lesson Wrap-Up

This concludes this lesson.

1. Select **File > Quit** to close ModelSim.

Index

A aCC, 64 add dataflow command, 110 add wave command, 81

break icon, 30 breakpoints in SystemC modules, 73 setting, 30 stepping, 33

— C —

C Debug, 73 Code Coverage excluding lines and files, 147 reports, 148 Source window, 145 command-line mode, 162 compile order, changing, 42 compiling your design, 18, 25 -cover argument, 140 coverage report command, 150 cursors, Wave window, 82, 95

— D —

Dataflow window displaying hierarchy, 110 expanding to drivers/readers, 102 options, 110 tracing events, 104 tracing unknowns, 108 dataset close command, 159 design library working type, 19 design optimization, 17 documentation, 13 drivers, expanding to, 102

— E —

external libraries, linking to, 56

--- F --folders, in projects, 45 format, saving for Wave window, 85

— **G** — gcc, 64

— H — hierarchy, displaying in Dataflow window, 110

— L —

libraries design library types, 19 linking to external libraries, 56 mapping to permanently, 60 resource libraries, 19 working libraries, 19 working, creating, 24 linking to external libraries, 56

— M —

manuals, 13 mapping libraries permanently, 60 memories changing values, 125 initializing, 121 memory contents, saving to a file, 120

— P —

Performance Analyzer filtering data, 135 physical connectivity, 102 Profiler profile details, 134 viewing profile details, 134

projects

adding items to, 40 creating, 39 flow overview, 18 organizing with folders, 45 simulation configurations, 48

— Q quit command, 57

— R —

radix command, 115 reference dataset, Waveform Compare, 152 reference signals, 151 run -all, 29 run command, 29

saving simulation options, 48 simulation basic flow overview, 17 restarting, 31 running, 28 simulation configurations, 48 Standard Developer's Kit User Manual, 14 stepping after a breakpoint, 33 SystemC setting up the environment, 64 supported platforms, 64 viewing in the GUI, 72

— T —

Tcl, using in the simulator, 165 test dataset, Waveform Compare, 152 test signals, 151 time, measuring in Wave window, 82, 95 toggle statistics, Signals window, 147 tracing events, 104 tracing unknowns, 108

— U unknowns, tracing, 108

vcom command, 114 vlib command, 114 vlog command, 114 vsim command, 24

-W-

Wave window adding items to, 80, 88 cursors, 82, 95 measuring time with cursors, 82, 95 saving format, 85 zooming, 82, 91
Waveform Compare reference signals, 151 saving and reloading, 157 test signals, 151
working library, creating, 18, 24

— X —

X values, tracing, 108

-z-

zooming, Wave window, 82, 91

End-User License Agreement

The latest version of the End-User License Agreement is available on-line at: www.mentor.com/terms_conditions/enduser.cfm

IMPORTANT INFORMATION

USE OF THIS SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS LICENSE AGREEMENT BEFORE USING THE SOFTWARE. USE OF SOFTWARE INDICATES YOUR COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH IN THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND CONDITIONS SHALL NOT APPLY.

END-USER LICENSE AGREEMENT ("Agreement")

This is a legal agreement concerning the use of Software between you, the end user, as an authorized representative of the company acquiring the license, and Mentor Graphics Corporation and Mentor Graphics (Ireland) Limited acting directly or through their subsidiaries (collectively "Mentor Graphics"). Except for license agreements related to the subject matter of this license agreement which are physically signed by you and an authorized representative of Mentor Graphics, this Agreement and the applicable quotation contain the parties' entire understanding relating to the subject matter and supersede all prior or contemporaneous agreements. If you do not agree to these terms and conditions, promptly return or, if received electronically, certify destruction of Software and all accompanying items within five days after receipt of Software and receive a full refund of any license fee paid.

- 1. GRANT OF LICENSE. The software programs, including any updates, modifications, revisions, copies, documentation and design data ("Software"), are copyrighted, trade secret and confidential information of Mentor Graphics or its licensors who maintain exclusive title to all Software and retain all rights not expressly granted by this Agreement. Mentor Graphics grants to you, subject to payment of appropriate license fees, a nontransferable, nonexclusive license to use Software solely: (a) in machine-readable, object-code form; (b) for your internal business purposes; (c) for the license term; and (d) on the computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half mile (800 meter) radius. Mentor Graphics' standard policies and programs, which vary depending on Software, license fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of Software, which may be limited, for example, to execution of a single session by a single user on the authorized hardware or for a restricted period of time (such limitations may be technically implemented through the use of authorization codes or similar devices); and (c) support services provided, including eligibility to receive telephone support, updates, modifications, and revisions.
- 2. EMBEDDED SOFTWARE. If you purchased a license to use embedded software development ("ESD") Software, if applicable, Mentor Graphics grants to you a nontransferable, nonexclusive license to reproduce and distribute executable files created using ESD compilers, including the ESD run-time libraries distributed with ESD C and C++ compiler Software that are linked into a composite program as an integral part of your compiled computer program, provided that you distribute these files only in conjunction with your compiled computer program. Mentor Graphics does NOT grant you any right to duplicate, incorporate or embed copies of Mentor Graphics' real-time operating systems or other embedded software products into your products or applications without first signing or otherwise agreeing to a separate agreement with Mentor Graphics for such purpose.
- 3. BETA CODE. Software may contain code for experimental testing and evaluation ("Beta Code"), which may not be used without Mentor Graphics' explicit authorization. Upon Mentor Graphics' authorization, Mentor Graphics grants to you a temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code without charge for a limited period of time specified by Mentor Graphics. This grant and your use of the Beta Code shall not be construed as marketing or offering to sell a license to the Beta Code, which Mentor Graphics may choose not to release commercially in any form. If Mentor Graphics authorizes you to use the Beta Code, you agree to evaluate and test the Beta Code under normal conditions as directed by Mentor Graphics. You will contact Mentor Graphics periodically during your use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of your evaluation and testing, you will send to Mentor Graphics a written evaluations and all inventions, product improvements, modifications or developments that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based partly or wholly on your feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have exclusive rights, title and interest in all such property. The provisions of this section 3 shall survive the termination or expiration of this Agreement.

4. **RESTRICTIONS ON USE.** You may copy Software only as reasonably necessary to support the authorized use. Each copy must include all notices and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All copies shall remain the property of Mentor Graphics or its licensors. You shall maintain a record of the number and primary location of all copies of Software, including copies merged with other software, and shall make those records available to Mentor Graphics upon request. You shall not make Software available in any form to any person other than employees and on-site contractors, excluding Mentor Graphics' competitors, whose job performance requires access and who are under obligations of confidentiality. You shall take appropriate action to protect the confidentiality of Software and ensure that any person permitted access to Software does not disclose it or use it except as permitted by this Agreement. Except as otherwise permitted for purposes of interoperability as specified by applicable and mandatory local law, you shall not reverse-assemble, reverse-compile, reverse-engineer or in any way derive from Software any source code. You may not sublicense, assign or otherwise transfer Software, this Agreement or the rights under it, whether by operation of law or otherwise ("attempted transfer"), without Mentor Graphics' prior written consent and payment of Mentor Graphics' then-current applicable transfer charges. Any attempted transfer without Mentor Graphics' prior written consent shall be a material breach of this Agreement and may, at Mentor Graphics' option, result in the immediate termination of the Agreement and licenses granted under this Agreement. The terms of this Agreement, including without limitation, the licensing and assignment provisions shall be binding upon your successors in interest and assigns. The provisions of this section 4 shall survive the termination or expiration of this Agreement.

5. LIMITED WARRANTY.

- 5.1. Mentor Graphics warrants that during the warranty period Software, when properly installed, will substantially conform to the functional specifications set forth in the applicable user manual. Mentor Graphics does not warrant that Software will meet your requirements or that operation of Software will be uninterrupted or error free. The warranty period is 90 days starting on the 15th day after delivery or upon installation, whichever first occurs. You must notify Mentor Graphics in writing of any nonconformity within the warranty period. This warranty shall not be valid if Software has been subject to misuse, unauthorized modification or improper installation. MENTOR GRAPHICS' ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS' OPTION, EITHER (A) REFUND OF THE PRICE PAID UPON RETURN OF SOFTWARE TO MENTOR GRAPHICS OR (B) MODIFICATION OR REPLACEMENT OF SOFTWARE THAT DOES NOT MEET THIS LIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE WHICH IS LICENSED TO YOU FOR A LIMITED TERM OR LICENSED AT NO COST; OR (C) EXPERIMENTAL BETA CODE; ALL OF WHICH ARE PROVIDED "AS IS."
- 5.2. THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR ITS LICENSORS MAKE ANY OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO SOFTWARE OR OTHER MATERIAL PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY.
- 6. **LIMITATION OF LIABILITY.** EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL MENTOR GRAPHICS' OR ITS LICENSORS' LIABILITY UNDER THIS AGREEMENT EXCEED THE AMOUNT PAID BY YOU FOR THE SOFTWARE OR SERVICE GIVING RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THIS SECTION 6 SHALL SURVIVE THE EXPIRATION OR TERMINATION OF THIS AGREEMENT.
- 7. **LIFE ENDANGERING ACTIVITIES.** NEITHER MENTOR GRAPHICS NOR ITS LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH THE USE OF SOFTWARE IN ANY APPLICATION WHERE THE FAILURE OR INACCURACY OF THE SOFTWARE MIGHT RESULT IN DEATH OR PERSONAL INJURY. THE PROVISIONS OF THIS SECTION 7 SHALL SURVIVE THE EXPIRATION OR TERMINATION OF THIS AGREEMENT.
- 8. **INDEMNIFICATION.** YOU AGREE TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND ITS LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE, OR LIABILITY, INCLUDING ATTORNEYS' FEES, ARISING OUT OF OR IN CONNECTION WITH YOUR USE OF SOFTWARE AS

DESCRIBED IN SECTION 7. THE PROVISIONS OF THIS SECTION 8 SHALL SURVIVE THE EXPIRATION OR TERMINATION OF THIS AGREEMENT.

9. INFRINGEMENT.

- 9.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against you alleging that Software infringes a patent or copyright or misappropriates a trade secret in the United States, Canada, Japan, or member state of the European Patent Office. Mentor Graphics will pay any costs and damages finally awarded against you that are attributable to the infringement action. You understand and agree that as conditions to Mentor Graphics' obligations under this section you must: (a) notify Mentor Graphics promptly in writing of the action; (b) provide Mentor Graphics all reasonable information and assistance to defend or settle the action; and (c) grant Mentor Graphics sole authority and control of the defense or settlement of the action.
- 9.2. If an infringement claim is made, Mentor Graphics may, at its option and expense: (a) replace or modify Software so that it becomes noninfringing; (b) procure for you the right to continue using Software; or (c) require the return of Software and refund to you any license fee paid, less a reasonable allowance for use.
- 9.3. Mentor Graphics has no liability to you if infringement is based upon: (a) the combination of Software with any product not furnished by Mentor Graphics; (b) the modification of Software other than by Mentor Graphics; (c) the use of other than a current unaltered release of Software; (d) the use of Software as part of an infringing process; (e) a product that you make, use or sell; (f) any Beta Code contained in Software; (g) any Software provided by Mentor Graphics' licensors who do not provide such indemnification to Mentor Graphics' customers; or (h) infringement by you that is deemed willful. In the case of (h) you shall reimburse Mentor Graphics for its attorney fees and other costs related to the action upon a final judgment.
- 9.4. THIS SECTION IS SUBJECT TO SECTION 6 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR GRAPHICS AND ITS LICENSORS AND YOUR SOLE AND EXCLUSIVE REMEDY WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT OR TRADE SECRET MISAPPROPRIATION BY ANY SOFTWARE LICENSED UNDER THIS AGREEMENT.
- 10. TERM. This Agreement remains effective until expiration or termination. This Agreement will immediately terminate upon notice if you exceed the scope of license granted or otherwise fail to comply with the provisions of Sections 1, 2, or 4. For any other material breach under this Agreement, Mentor Graphics may terminate this Agreement upon 30 days written notice if you are in material breach and fail to cure such breach within the 30 day notice period. If Software was provided for limited term use, this Agreement will automatically expire at the end of the authorized term. Upon any termination or expiration, you agree to cease all use of Software and return it to Mentor Graphics or certify deletion and destruction of Software, including all copies, to Mentor Graphics' reasonable satisfaction.
- 11. **EXPORT.** Software is subject to regulation by local laws and United States government agencies, which prohibit export or diversion of certain products, information about the products, and direct products of the products to certain countries and certain persons. You agree that you will not export any Software or direct product of Software in any manner without first obtaining all necessary approval from appropriate local and United States government agencies.
- 12. **RESTRICTED RIGHTS NOTICE.** Software was developed entirely at private expense and is commercial computer software provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the restrictions set forth in the license agreement under which Software was obtained pursuant to DFARS 227.7202-3(a) or as set forth in subparagraphs (c)(1) and (2) of the Commercial Computer Software Restricted Rights clause at FAR 52.227-19, as applicable. Contractor/manufacturer is Mentor Graphics Corporation, 8005 SW Boeckman Road, Wilsonville, Oregon 97070-7777 USA.
- 13. **THIRD PARTY BENEFICIARY.** For any Software under this Agreement licensed by Mentor Graphics from Microsoft or other licensors, Microsoft or the applicable licensor is a third party beneficiary of this Agreement with the right to enforce the obligations set forth herein.
- 14. **AUDIT RIGHTS.** You will monitor access to, location and use of Software. With reasonable prior notice and during your normal business hours, Mentor Graphics shall have the right to review your software monitoring system and reasonably relevant records to confirm your compliance with the terms of this Agreement, an addendum to this Agreement or U.S. or other local export laws. Such review may include FLEXIm or FLEXnet report log files that you shall capture and provide at Mentor Graphics' request. Mentor Graphics shall treat as confidential information all of your information gained as a result of any request or review and shall only use or disclose such information as required by law or to enforce its rights under this Agreement or addendum to this Agreement. The provisions of this section 14 shall survive the expiration or termination of this Agreement.

- 15. CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. THIS AGREEMENT SHALL BE GOVERNED BY AND CONSTRUED UNDER THE LAWS OF THE STATE OF OREGON, USA, IF YOU ARE LOCATED IN NORTH OR SOUTH AMERICA, AND THE LAWS OF IRELAND IF YOU ARE LOCATED OUTSIDE OF NORTH OR SOUTH AMERICA. All disputes arising out of or in relation to this Agreement shall be submitted to the exclusive jurisdiction of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when the laws of Ireland apply. Notwithstanding the foregoing, all disputes in Asia (except for Japan) arising out of or in relation to this Agreement shall be resolved by arbitration in Singapore before a single arbitrator to be appointed by the Chairman of the Singapore International Arbitration Centre ("SIAC") to be conducted in the English language, in accordance with the Arbitration Rules of the SIAC in effect at the time of the dispute, which rules are deemed to be incorporated by reference in this section 15. This section shall not restrict Mentor Graphics' right to bring an action against you in the jurisdiction where your place of business is located. The United Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement.
- 16. **SEVERABILITY.** If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid, unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full force and effect.
- 17. **PAYMENT TERMS AND MISCELLANEOUS.** You will pay amounts invoiced, in the currency specified on the applicable invoice, within 30 days from the date of such invoice. Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half percent per month or the applicable legal rate currently in effect, whichever is lower. Some Software may contain code distributed under a third party license agreement that may provide additional rights to you. Please see the applicable Software documentation for details. This Agreement may only be modified in writing by authorized representatives of the parties. Waiver of terms or excuse of breach must be in writing and shall not constitute subsequent consent, waiver or excuse.

Rev. 060210, Part No. 227900