
ENGR 3410: MP#3

Full MIPS Single-Cycle CPU

Due in class (with demo), 15 November 2010

1 The Problem

The purpose of this machine problem is to complete
your simple 32-bit MIPS single-cycle CPU. The CPU
instructions to be implemented are: LW, SW, J, JR,
BNE, XORI, ADD, SUB, and SLT.

The book will give some examples of how archi-
tectures are put together, and will be useful as you
design your own CPU. For this CPU, you will use
your two previous machine problems (the register file
and the ALU) so you will need to have these fully
functional before proceeding to work on your CPU.
Contact us immediately if you do not have working
code you can use!

You are given some fake memory Verilog modules,
an assembler, some assembly code source, and some
compiled machine code to get you started. All of this
is available on the wiki.

You need to test more thoroughly! You should very
much be writing your own assembly code to test your
CPU.

2 Implementation Details

The data memory and instruction memory modules
are in the files datamem.v and instrmem.v, respec-
tively. There are also a bunch of test programs to
help you test the functionality of your CPU. You can
change the program loaded by editing the instr.dat
string in instrmem.v. You are responsible for coming
up with the top-level testbench for this assignment —
use previous machine problems’ testbenches guides.

You will be given an assembler that will allow you

to assemble your own assembly-language test benches
into machine language that can be loaded into your
system for testing. The tools include a Windows
command-line executable on the wiki. If you have
trouble executing the assembler, please let me know
immediately. Please note, this is not a commercial
assembler. Be gentle.

The control logic for your CPU can (and
should) be done in behavioral Verilog.

This machine problem is significantly more com-
plicated from a system integration perspective than
the previous ones. Certainly, there are many more
failure points in this problem than in the previous as
there is much more integration of parts. Additionally,
if your previous machine problems do not work cor-
rectly, you will need to make sure they are functional
before you can test your CPU.

My estimate for completion of this machine prob-
lem is approximately 30 person-hours.

3 Requirements

There is no top-level test bench! You are designing
your CPU, you must design a way to reliably test it.
These tests will be used to prove to us that your CPU
works. We have our own tests. These will take the
form of machine code that gets loaded into memo-
ries.

As before, you should be writing test benches for
every module you build. You are getting good at
Verilog, I understand, however, this is a big machine
problem, and you will get something wrong in putting
it all together. Tests are your friends.

1



One good way to structure your test bench is to
make a generic CPU test bench that instantiates your
entire CPU (control and datapath) as well as both
memories. These memories are simply Verilog files
that fake memories and fill them with values from
another file. Look at the code for examples of
using memories. Then, you just change the con-
tents of the memories and voila, your CPU executes
a different piece of code. Observe the results as gen-
erated in the register file or in the input to the data
memory write line. You have to instrument these
“probes” for any useful data to come out.

Write some assembly code! Assemble it with the
provided assembler and make sure your CPUs work!

4 Deliverables

We have two deliverables. A write-up with code, and
a demo.

4.1 Write-Up

I expect a semi-formal lab write-up of this machine
problem. It does not need to be as rigorous as lab
notebooks in other, more experimental classes.

Designate one member of your team as the submis-
sion vehicle. In that person’s SVN directory, create
a directory called mp3. Put your write-up (PDF) and
supporting Verilog code in that mp3 directory and
commit the files to the repository.

Other notes:

• Turn in one deliverable for all group members.

• All group members to participate in every aspect
of this machine problem.

• Please check out the tutorials on the class wiki.
They are actually useful, I promise.

4.2 Demos

DEMOS ARE REQUIRED, WHETHER
YOUR CODE WORKS OR NOT

The Demo is when your team convinces us that
your implementation does what it was supposed to

do. This is accomplished by your team running our
test bench file. I will distribute this file about 12–24
hours before the demo time so you have a chance to
plug everything together and see if it works.

The Demo time is also a time for us to gauge the
level of involvement of each of the group members.
Demos will be done during class time on the due date,
or before the demo time, offline, with results submit-
ted.

If you do not demo your assignment, your team
will automatically get a zero. Missing your demo slot
without prior approval will impose a late penalty on
the entire assignment. All team members should be
present for the demonstration unless a prior arrange-
ment has been made.

HONOR CODE INFORMATION HERE:
Your team must complete the assignment before
you try the official test bench. Your team will not
change the code after this time except to correct
errors. If you have to change the code, you must let
the grader know that you have made modifications
to the code. During the demo you must demonstrate
your broken code first, then any modifications you
did to fix it.

5 Hints and Tips

• Did you notice that there were tons of demo as-
sembly codes and no real CPU test harness? You
have to write it. It literally instantiates the CPU
parts and ticks a clock. Easy. Now build the
CPU.

• You must write some assembly code and test it
to make this complete!

2


