1001
Pipelining

ENGR 3410 - Computer Architecture
Fall 2010

Pipelining

Example: Doing the laundry

Ann, Brian, Cathy, & Dave @@@

each have one load of clothes to wash, dry, and fold

0o
Washer takes 30 minutes

| Ex—
Dryer takes 40 minutes

(@)

“Folder” takes 20 minutes ﬁF

-

ﬁequential Laundry \
6PM 7 8 9 10 11 Midnight
|

| Time

30|40 IE|30|40 I§|30|40 I5|30|40 IE|

e
.=

x 0o -

el ot @]
]
0p

» Sequential laundry takes 6 hours for 4 loads
« If they learned pipelining, how long would laundry take?

-
N

Pipelined Laundry: Start work ASAP \

<

6PM 7 8 9 10 11 Midnight
|
| Time
[P N
30 40 40 40 40 20
T = e
T mi=
s = e
k
‘& O
& (o
e Ho °
1D SPhr

« Pipelined laundry takes 3.5 hours for 4 loads
3

Pipelining Lessons

8 9

| @6
&
@B
&

N

Clsié:

oo |

30 40 40 40 40 20

T,

S
[

Shy

« Pipelining doesn’t help latency
of single task, it helps
throughput of entire workload

« Pipeline rate limited by slowest
pipeline stage

» Multiple tasks operating
simultaneously using different
resources

« Potential speedup = Number
pipe stages

« Unbalanced lengths of pipe
stages reduces speedup

» Time to “fill” pipeline and time
to “drain” it reduces speedup

« Stall for Dependences

N

ﬁipeli ned Execution

Time

| IFetchl Dcd

|Exec |Mem |WB |

| IFetchl Dcd

|Exec |Mem |WB |

| IFetchl Dcd

|Exec |Mem |WB |

| IFetchl Dcd

|Exec |Mem |WB |

Program Flow | IFetchl Dod

|Exec |Mem |WB |

« Now we just have to make it work

Single Cycle, Multiple Cycle, vs. Pipeline

Clk

Single Cycle Implementation:

o L L L L L]

Multiple Cycle Implementation:

Pipel;
Load|

Cycle 1

Cycle 3 ———————

Load

Store { Waste

Cycle 1} Cyele 2 Cycle 3} Cycle 4} Cycle 5

Load

Cycle 6! Cycle 7 Cycle 8} Cycle 9 Cycld

N I Y I B O I

Store

10

I I

R-type

Ifetchl Reg I Exec I Mem I ‘Wr

Ifetchl Reg I Exec I Mem

Ifetch I

ne Implementation:

Ifetchl Reg I Exec I Mem I Wr

Storel Ifetchl Reg I Exec I Mem I ‘Wr I

R-typel Ifetchl Reg I Exec I Mem I Wr I

o

Why Pipeline?

» Suppose we execute 100 instructions

« Single Cycle Machine
- 45 ns/cycle x 1 CPI x 100 inst

» Multicycle Machine

- 10 ns/cycle x 4.0 CPI x 100 inst = ns

« Ideal pipelined machine

- 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = ns

CPI for Pipelined Processors

 Ideal pipelined machine
- 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = ns

« CPI in pipelined processor is “issue rate”. Ignore fill/drain, ignore
latency.

« Example: A processor wastes 2 cycles after every branch, and 1 after
every load, during which it cannot issue a new instruction. If a program
has 10% branches and 30% loads, what is the CPI on this program?

oo

Pipelined Datapath

/Divide datapath into multiple pipeline stages

IF RF EX MEM WB
Instruction Register Execute Data Writeback
Fetch — Fetch — — Memory _‘
g | Instr. || P~ Register b = Register
Memory |[2(] File B B Data File
g Ei g
r'— Memory

(-

Pipelined Control

» The Main Control generates the control signals during Reg/Dec
- Control signals for Exec (ALUOp, ALUSrcA, ...) are used 1 cycle later
- Control signals for Mem (MemWE, lorD, ...) are used 2 cycles later
- Control signals for Wr (Mem2Reg, RegWE, ...) are used 3 cycles later

1 1 1 1
1t Reg/Dec | Exec |3 Mem 1i,_ Wr
1 1 1: 1:
i ALUSrcA é ALUSrcA é i
ALUSrcB ALUSrcB -
- ALUOp |=| ALuOp £ =
Z Main g = E
<] RegDst = | _RegDst] >
Control o =] =
ol e = = =
) MemWE) MemWE 2 | MemWE =
“.3. =, el o
a IorD @ TIorD @ | _lorD =
8 g g &
Mem2Reg Mem2Reg Mem2Reg = | Mem2Reg
RegWE RegWE RegWE RegWE
10

Can pipelining get us into trouble?
e Yes: Pipeline Hazards

- structural hazards: attempt to use the same resource two different
ways at the same time

» E.g., combined washer/dryer would be a structural hazard or
folder busy doing something else (watching TV)

- data hazards: attempt to use item before it is ready

» E.g., one sock of pair in dryer and one in washer; can’t fold until
get sock from washer through dryer

« instruction depends on result of prior instruction still in the
pipeline
- control hazards: attempt to make decision before condition evaluated

« E.g., washing football uniforms and need to get proper detergent
level; need to see after dryer before next load in

« branch instructions
« Can always resolve hazards by waiting
- pipeline control must detect the hazard
- take action (or delay action) to resolve hazards

Pipelining the Load Instruction

The five independent functional units in the pipeline datapath are:
- Instruction Memory for the Ifetch stage
- Register File’s Read ports (bus A and bus B) for the Reg/Dec stage
- ALU for the Exec stage
- Data Memory for the Mem stage
- Register File’s Write port (bus W) for the Wr stage

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

cok L L L LT LT LT LT

lstlwl Ifetch IReg/DecI Exec I Meml Wr I

2nd tw| Tfeteh [Reg/Dec] Exec | Mem | wr |

3rd lwI Ifetch IReg/DecI Exec I Mem I Wr

12

The Four Stages of R-type

Ifetch: Fetch the instruction from the Instruction Memory
Reg/Dec: Register Fetch and Instruction Decode

Exec: ALU operates on the two register operands

Wr: Write the ALU output back to the register file

Cycle 1 Cycle 2 Cycle3§ Cycle 4

J S N B N B B

R-typel Ifetch IReg_fDecI Exec I ‘Wr I

Structural Hazard

» Interaction between R-type and loads causes structural hazard on
writeback

Cyclel Cycle 2} Cycle 3i iCycle 4 : Cycle 5: Cycle 6: Cycle 7: Cycle 8: Cycle 9 i

anII_II_II_II_II_II_II_II_II_I

Rtypel Ifetch IReg/DecI Exec I Wr I

R-typel Ifetch IReg/DecI Exec I ‘Wr I

Loadl Ifetch IReg/DecI Exec I Mem I ‘Wr I

R-typel Ifetch IReg/DecI Exec I ‘Wr I

R-typel Ifetch IReg/DecI Exec I Wr

14

Important Observation

« Each functional unit can only be used once per instruction
« Each functional unit must be used at the same stage for all instructions:
- Load uses Register File’s Write Port during its 5th stage

1 2 3 4 5
Loadl Ifetch IReg/DecI Exec I Mem I Wr I

- R-type uses Register File’s Write Port during its 4th stage

1 2 3 4
R-typel Ifetch IReg/DecI Exec I Wr I

« Solution: Delay R-type’s register write by one cycle:
- Now R-type instructions also use Reg File’s write port at Stage 5
- Mem stage is a NOOP stage: nothing is being done.

1 2 3 4 5
R-typel Ifetch IReg/DecI Exec | Mem | Wr I

Pipelining the R-type Instruction

{ Cycle1iCycle2 | Cycle3i Cycle4 i Cycle5 i Cycle 6 i Cycle7 i Cycle 8 i Cycle9

aeck L L L L L L LTI

R-typel Ifetch IReg/DecI Exec I Mem I Wr I

R-typel Ifetch IReg/DecI Exec I Mem I ‘Wr I

Loadl Ifetch IReg/DecI Exec I Mem I Wr I

R-typel Ifetch IReg/DecI Exec I Mem I ‘Wr I

R-typel Ifetch IReg/DecI Exec I Mem I Wr

16

The Four Stages of Store

« Ifetch: Fetch the instruction from the Instruction Memory
o Reg/Dec: Register Fetch and Instruction Decode

» Exec: Calculate the memory address

e Mem: Write the data into the Data Memory

» Wr: NOOP

o Compatible with Load & R-type instructions

Cycle 1 Cycle 2 Cycle 3 Cycle 4

J T N I N I N

Storel Ifetch IReg/DecI Exec I Mem I Wr

The Stages of Branch

« Ifetch: Fetch the instruction from the Instruction Memory

o Reg/Dec: Register Fetch and Instruction Decode, compute branch target
» Exec: Test condition & update the PC

« Mem: NOOP

» Wr: NOOP

Cycle 1 Cycle 2 Cycle 3 Cycle 4

J T N I N I N

Beq I Ifetch IReg/DecI Exec || Mem | Wr

N

Control Hazard

« Branch updates the PC at the end of the Exec stage.

{ Cycle1iCycle2 | Cycle3iCycle4 i Cycle5 i Cycle 6 i Cycle7 i Cycle 8 i Cycle9

CIOIII_II_II_II_II_II_II_II_II_I

R-typel Ifetch IReg/DecI Exec I Mem I Wr I

beq I Ifetch IReg/DecI Exec I Meml Wr |

load I Ifetch IReg/DecI Exec I Mem I Wr I

R-typel Ifetch IReg/DecI Exec I Meml ‘Wr I

R-typel Ifetch IReg/DecI Exec I Mem I Wr

Accelerate Branches

-

¢

When can we compute branch target address?
When can we compute beq condition?

IF RF EX MEM WB
Instruction Register Execute Data Writeback
Fetch — Fetch — — Memory —
Instr. 2 Register b = - Register
Memory 21 File e] Data _J "g 1 File
&~ g g . -
I]_» Memory

20
Accelerate Branches
« When can we compute branch target address?
» When can we compute beq condition?
IF RF EX MEM WB
Instruction Register Execute Data Writeback
Fetch — Fetch — — Memory —
Instr. - Register tost b = - Register
Memory 21 File os =] D _J "g 1 File
I 2 2 ata i L
4 =
I]_» Memory
— [1" L] L]

Control Hazard 2

« Branch updates the PC at the end of the Reg/Dec stage.

{ Cycle1iCycle2 | Cycle3i Cycle4 i Cycle5 i Cycle 6 i Cycle7 i Cycle 8 i Cycle9

CIOIII_II_II_II_II_II_II_II_II_I

R-typel Ifetch IReg/DecI Exec I Mem I Wr I

beq I Ifetch IReg/DecI Exec | Meml Wr |

loadl Ifetch IReg/DecI Exec I Mem I Wr I

R-typel Ifetch IReg/DecI Exec I Mem I ‘Wr I

R-typel Ifetch IReg/DecI Exec I Mem I Wr

Cycle 1 Cycle 2 Cycle3§ Cycle 4

J T N I N I N

Beq Ilfetch IReg/DecIl Exec I Mem " ‘Wr

Solution #1: Stall

» Delay loading next instruction, load no-op instead

{ Cycle1iCycle2 | Cycle3iCycle4 i Cycle5 i Cycle 6 i Cycle7 i Cycle 8 i Cycle9

ook L L L L L LI L L LT

R-typel Ifetch IReg/DecI Exec I Mem I Wr I

beq I Ifetch IReg/DecI Exec | Mem | Wr |

°0
Bubbl Bubbl Bubbl Bubbl
K e e e e

I Ifetch IReg/DecI Exec I Mem Wr

R-typel Ifetch IReg/DecI Exec I Mem I Wr

R-typel Ifetch IReg/DecI Exec I Mem I Wr

o CPI if all other instructions take 1 cycle, and branches are 20% of
instructions?

Solution #2: Branch Prediction

« Guess all branches not taken, squash if wrong

{ Cycle1iCycle2 | Cycle3i Cycle4 i Cycle5 i Cycle 6 i Cycle7 i Cycle 8 i Cycle9

aeck L L L L L L LTI

R-typel Ifetch IReg/DecI Exec I Mem I Wr I

beq I Ifetch IReg/DecI Exec | Meml Wr |

loadl Ifetch IReg/DecI Exec I Mem I Wr I

R-typel Ifetch IReg/DecI Exec I Mem I ‘Wr I

R-typel Ifetch IReg/DecI Exec I Mem I Wr I

« CPIif 50% of branches actually not taken, and branch frequency 20%?

24
Solution #3: Branch Delay Slot
» Redefine branches: Instruction directly after branch always executed
Instruction after branch is the delay slot
Compiler/assembler fills the delay slot
add $tl, $t0, $t0 sub $t2, §t0, $t3 add $tl, $t0, $t0 add $tl, $t0, S$t0
beq $t2, $t3, FOO add tl, St0, $tO beq $tl, $t3, FOO beqg $tl, $t3, FOO

beqg $tl1, $t3, FOO
add $tl1, $t3, $t3
FOO:
add $tl, $t2, $tO

Solution #3: Branch Delay Slot

» Redefine branches: Instruction directly after branch always executed
. Instruction after branch is the delay slot

» Compiler/assembler fills the delay slot

gaStS5toT—5t0 T ST2, ST0, ST add $tl1, $t0, $t0 add $tl1, $t0, St
eq $t2, $t3, FOO add $tl, $t0, $tO beg $tl, $t3, FOO beg $tl, $t3, FO
dd $tl, $t0, $tO beqg $t1, $t3, FOO add $t1, $t2, $tO add $0, $0, $0
sub $t2, $t0, $t3 add $tl1, $t3, $t3
No N Insert noop
o FOO:
wasted o2 Wastes 1 cycle
wasted add Stl, StZ, StU
cycles per branch
cycles 0
Assume 50% branch,

Wastes 2 cycle per branch

Compare vs. stall

N 26

Data Hazards

« Consider the following code:
- add Sto, St1, $t2
- sub S$t3, St0, St4
- and $t5, Sto, St7
- or $t8, St0, $sO
- xor $s1, St0, $s2

Cycle 1 Cycle 2 Cycle 3 Cycle 4 ;Cycle 5 ;Cycle 6 ;Cycle 7 ;Cycle 8 ;Cycle 9

s T e A e Y e Y e T e Y e o Y o B

add

Ifetch IReg/DecI Exec I Meml Wr I

sub I Ifetch IReg_/DecI Exec I Mem I Wr I

and I Ifetch IReg/DecI Exec I Mem I Wr I

or I Ifetch IReg_/DecI Exec I Mem I Wr I

xor I Ifetch IReg/DecI Exec I Mem I Wr

Data Hazards

« Consider the following code:
- add Sto, St1, $t2
- sub S$t3, St0, St4
- and $t5, Sto, St7
- or $t8, St0, $sO
- xor $s1, St0, $s2

Cycle 1 Cycle 2 Cycle 3 Cycle 4 ;Cycle 5 ;Cycle 6 ;Cycle 7 ;Cycle 8 ;Cycle 9

s T e A e Y e e T e Y e o Y o B

Ifetch IReg/DecI Exec I Mem

add

sub Ifetch | Re: Wr

and I Ifetch IRe Decl E I em I Wr I

or I Ifetch IRe /Decl xec I Mem I Wr I

\ xor I Ifetch IRe /Decl Exec I Mem I Wr

Design Register File Carefully
What if reads see value after write during the same cycle? add $10, $t1, $t2
sub $t3, $t0, $t4
and $t5, $t0, $t7
or $t8, $t0, $s0
xor $s1, $t0, $s2
{ Cycle1iCycle2 | Cycle3iCycle4 i Cycle5 i Cycle 6 i Cycle7 i Cycle 8 i Cycle 9 |

ok L L L L L LML L 1L

add IIfetch IReg/DecI Exec I Meml Wr I

sub I Ifetch IReg_/DecI Exec I Mem I Wr I

and I Ifetch IReg/DecI Exec I Mem I Wr I

or I Ifetch IReg_/DecI Exec I Mem I Wr I

xor I Ifetch IReg/DecI Exec I Mem I Wr

Forwarding

Note: data is computed by end of Cycle 3 (Exec stage of add). Add logic to
pass last two values from ALU output to ALU input(s) as needed
- Forward the ALU output to later instructions add $t0, $t1, $t2
sub $t3, $t0, $t4
and $t5, $t0, $t7
or $t8, $t0, $s0
xor $s1, $t0, $s2

Cycle 1 Cycle 2 Cycle 3 Cycle 4 ;Cycle 5 ;Cycle 6 ;Cycle 7 ;Cycle 8 ;Cycle 9

ok L L L L L LML L 1L

add IIfetch IReg/DecI Exec I Meml Wr I

sub I Ifetch IReg/DecI Exec I Mem I Wr I

and I Ifetch IReg/DecI Exec I Mem I Wr I

or I Ifetch IReg/DecI Exec I Mem I Wr I

xor I Ifetch IReg/DecI Exec I Mem I Wr
30

Forwarding (cont.)

» Requires values from last two ALU operations.
» Remember destination register for operation.
« Compare sources of current instruction to destinations of previous 2.

IF RF EX MEM WB
Instruction Register Execute Data Writeback
Fetch _ Fetch _ Memory _

~ Instr. = 1 Register = = »1 Register
| | Memory [E[[>1 File d B p o1 File

3| & ata &

8 tel g |8

T Memory

31

Forwarding (cont.)
» Requires values from last two ALU operations.

» Remember destination register for operation.
« Compare sources of current instruction to destinations of previous 2.

add $t0, $tl1, $tl
sub $t0, $t3, $t0
xor $t2, $t0, Sto

“|[Forwarding */
L Unit - Note: what if reg written twice?

IF RF EX MEM WB
Instruction Register Execute Data Writeback

Fetch _ Fetch _ Memory _

;% Instr. || = Register j::><</; | Bl Register
i i i iEly i
Memory % File 2 [_%; Data N § File |
o Memory
*F()rWardiIlg [/
< Unit
32
Forwarding (cont.)
» Requires values from last two ALU operations.
» Remember destination register for operation.
« Compare sources of current instruction to destinations of previous 2.
IF RF EX MEM WB
Instruction Register Execute Data Writeback

Fetch _ Fetch _ Memory _

;% Instr. || = Register j::><</; | Bl Register
i i i iy i
Memory 2 File 2 [z Data | | (g File |
o Memory

33

Data Hazards on Loads

load $t0, 0(S$tl) # Data being fetched in cycle 4
sub $t3, $tO0, St4 # sub performed in cycle 4!
and S$t5, $tO, $t7 # fixed already ©

or $t8, $to, $s0
xor $sl, $tO, $s2

Cycle 1E Cycle 2 Cycle 3E Cycle 4 ECycle 5 ECycle 6 ECycle 7 ECycle 8 ECycle 9}

cmml_ll_ll_ll_ll_ll_ll_ll_ll_l

load I Ifetch IReg/DecI Exec I Meml Wr I

sub I Ifetch IReg_/DecI Exec I Mem I Wr I

and I Ifetch IReg/DecI Exec I Mem I Wr I

or I Ifetch IReg_/DecI Exec I Mem I Wr I

xor I Ifetch IReg/DecI Exec I Mem I Wr

Data Hazards on Loads

« Consider the following code:

load St0, 0(5t1)

- sub $t3, St0, $t4 - cannot be solved. Data unavailable when needed

- and $t5, 5$t0, $t7 - solved by forwarding

- or $t8, St0, $s0 - fixed by register file design (read sees same cycle
write)

- xor $s1 Sto, $sZ no problem

Cyclel Cycle 2 Cycle3 Cycle 4 : CycleS Cycle6 Cycle7 Cycle8 Cycle9

cock L LT L 1 ' I_I I_I I_I !
Ifetch IReg/DecI Exec I Mg
sub Ifetch || Reg/ Exec M Wr

and I Ifetch IReg/De Exi\Mem I Wr I
or I Ifetch IReg_/ cI xec I Mem I Wr I

xor IIfetch IRe ecl Exec I Meml Wr

load

Data Hazards on Loads

« Solution:

- Use same forwarding hardware & register file for hazards 2+ cycles
later

- Stall for a cycle (no one likes this): hazard detection logic will
- Force compiler to not allow register reads within a cycle of load
« Fill delay slot, or insert no-op.

Pipelined CPI, cycle time

« CPI, assuming compiler can fill 50% of delay slots

Instruction Type Type Cycles Type Frequency Cycles * Freq
ALU 50%
Load 20%
Store 10%
Branch 20%
CPI:
Pipelined: cycle time = 1ns. Delay for 1M instr:

Multicycle: CPI = 4.0, cycle time = 1ns. Delay for 1M instr:
Single cycle: CPI = 1.0, cycle time = 4.5ns. Delay for 1M instr:

Pipelined CPI, cycle time

CPI, assuming compiler can fill 50% of delay slots

Instruction Type Type Cycles Type Frequency Cycles * Freq
ALU 1.0 50% 0.5
Load 1.5 20% 0.3
Store 1.0 10% 0.1
Branch 1.5 20% 0.3

CPI:

1.2

Pipelined: cycle time = 1ns.
Multicycle: CPI = 4.0, cycle time = 1ns. Delay for 1M instr: 4*10¢ns
Single cycle: CPI = 1.0, cycle time = 4.5ns. Delay for 1M instr: 4.5*10%ns

Delay for 1M instr: (1.2*10%+4)ns

Pipelined CPU Summary

Pipelined CPU Summary

Improve cycle time by pipelining CPU
Concerns

- Structural Hazards - two instrs can’t use same resource in a clock
cycle

- Allinstrs are 5 cycles, and do the same tasks on each of their cycles
- Control Hazards - instructions after jump/branches may get executed
Speed branch computation to reduce control hazards

- Compiler fills delay slot, or use branch prediction

Data Hazards - next instruction may need value you compute

- Forwarding to pass value from ALU out to ALU in of next instr(s)

- Loads have unavoidable hazards, can’t be accessed in next instr.

Significant potential speedups over single-cycle, multi-cycle CPU

