
Basic Verilog Tutorial 
Mark L. Chang1, last revised 10/03/2004 

Introduction 
The following tutorial is intended to get you going quickly in gate-level circuit design in 
Verilog.  It isn’t a comprehensive guide to Verilog, but should contain everything you 
need to design circuits for your class. 
If you have questions, or want to learn more about the language, I’d recommend Samir 
Palnitkar’s Verilog HDL: A Guide to Digital Design and Synthesis. It is available on 
reserve at the library. 

Modules 
The basic building block of Verilog is a module.  This is similar to a function or 
procedure in C/C++/Java in that it performs a computation on the inputs to generate an 
output.  However, a Verilog module really is a collection of logic gates, and each time 
you call a module you are creating that set of gates. 
An example of a simple module: 
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// Compute the logical AND and OR of inputs A and B. 
module AND_OR(andOut, orOut, A, B); 
  output andOut, orOut; 
  input A, B; 
 
  and TheAndGate (andOut, A, B); 
  or TheOrGate (orOut, A, B); 
endmodule 

 
We can analyze this line by line: 

                                                 
1 Material contributed by Scott Hauck, Akshay Sharma, and various faculty at the University of 
Washington. 



// Compute the logical AND and OR of inputs A and B. 

The first line is a comment, designated by the //.  Everything on a line after a // is ignored.  
Comments can appear on separate lines, or at the end of lines of code. 
module AND_OR(andOut, orOut, A, B); 
  output andOut, orOut; 
  input A, B; 

The top of a module gives the name of the module (AND_OR in this case), and the list of 
signals connected to that module.  The subsequent lines indicate that the first two binary 
values (andOut and orOut) are generated by this module, and are output from it, while the 
next two (A, B) are inputs to the module. 
  and TheAndGate (andOut, A, B); 
  or TheOrGate (orOut, A, B); 

This creates two gates: An AND gate, called “TheAndGate”, with output andOut, and 
inputs A and B; An OR gate, called “TheOrGate”, with output orOut, and inputs A and B.  
The format for creating or “instantiating” these gates is explained below. 
endmodule 

All modules must end with an endmodule statement. 

Basic Gates 
Simple modules can be built from several different types of gates: 
buf <name> (OUT1, IN1); // Sets output equal to input 
not <name> (OUT1, IN1); // Sets output to opposite of input 
The <name> can be whatever you want, but start with a letter, and consist of letters, 
numbers, and the underscore “_”.  Avoid keywords from Verilog (i.e. “module”, 
“output”, etc.). 
There are multi-input gates as well, which can each take two or more inputs: 
and <name> (OUT, IN1, IN2); // Sets output to AND of inputs 
or <name> (OUT, IN1, IN2); // Sets output to OR of inputs 
nand <name> (OUT, IN1, IN2); // Sets to NAND of inputs 
nor <name> (OUT, IN1, IN2); // Sets output to NOR of inputs 
xor <name> (OUT, IN1, IN2); // Sets output to XOR of inputs 
xnor <name> (OUT, IN1, IN2); // Sets to XNOR of inputs 
If you want to have more than two inputs to a multi-input gate, simply add more.  For 
example, this is a five-input and gate: 
and <name> (OUT, IN1, IN2, IN3, IN4, IN5); // 5-input AND 

Hierarchy 
Just like we build up a complex software program by having procedures call 
subprocedures, Verilog builds up complex circuits from modules that call submodules.  
For example, we can take our previous AND_OR module, and use it to build a 
NAND_NOR: 
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// Compute the logical AND and OR of inputs A and B. 
module AND_OR(andOut, orOut, A, B); 
  output andOut, orOut; 
  input A, B; 
 
  and TheAndGate (andOut, A, B); 
  or TheOrGate (orOut, A, B); 
endmodule 
 
// Compute the logical NAND and NOR of inputs X and Y. 
module NAND_NOR(nandOut, norOut, X, Y); 
  output nandOut, norOut; 
  input X, Y; 
  wire andVal, orVal; 
 
  AND_OR aoSubmodule (andVal, orVal, X, Y); 
  not n1 (nandOut, andVal); 
  not n2 (norOut, orVal); 
endmodule 

Notice that in the NAND_NOR procedure, we now use the AND_OR module as a gate 
just like the standard Verilog “and”, “not”, and other gates.  That is, we list the module’s 
name, what we will call it in this procedure (“aoSubmodule”), and the outputs and inputs: 
  AND_OR aoSubmodule (andVal, orVal, X, Y); 
Note that the connections to the sub-module work the same as parameters to C/C++/Java 
procedures.  That is, the variable andVal in the NAND_NOR module is connected to the 
andOut output of the AND_OR module, while the X variable in the NAND_NOR module 
is connected to the A input of the AND_OR module.  Note that every signal name in each 
module is distinct.  That is, the same name can be used in different modules 
independently. 



Just as we had more than one not gate in the NAND_NOR module, you can also call the 
same submodule more than once.  So, we could add another AND_OR gate to the 
NAND_NOR module if we chose to – we simply have to give it a different name (like 
“n1” and “n2” on the not gates).  Each call to the submodule creates new gates, so three 
calls to AND_OR (which creates an AND gate and an OR gate in each call) would create 
a total of 2*3 = 6 gates. 
One new statement in this module is the “wire” statement: 
  wire andVal, orVal; 

This creates what are essentially local variables in a module.  In this case, these are actual 
wires that carry the signals from the output of the AND_OR gate to the inverters. 
Note that we chose to put the not gates below the AND_OR in this procedure.  The order 
actually doesn’t matter – the calls to the modules hooks gates together, and the order they 
“compute” in doesn’t depend at all on their placement order in the code – all execute in 
parallel anyway.  Thus, we could swap the order of the “not” and “AND_OR” lines in the 
module freely. 

True and False 
Sometimes you want to force a value to true or false.  We can do that with the numbers 
“0” = false, and “1” = true.  For example, if we wanted to compute the AND_OR of false 
and some signal “foo”, we could do the following: 
  AND_OR aoSubmodule (andVal, orVal, 0, foo); 
This also means that if you need to have a module that always outputs true or false, we 
can do that with a buf gate: 
// Always return TRUE. 
module TRUE(Out); 
  output Out; 
 
  buf b1(Out, 1); 
endmodule 

Delays 
Normally Verilog statements are assumed to execute instantaneously.  However, Verilog 
does support some notion of delay.  Specifically, we can say how long the basic gates in a 
circuit take to execute with the # operator.  For example: 
// Compute the logical AND and OR of inputs A and B. 
module AND_OR(andOut, orOut, A, B); 
  output andOut, orOut; 
  input A, B; 
 
  and #5 TheAndGate (andOut, A, B); 
  or #10 TheOrGate (orOut, A, B); 
endmodule 



This says that the and gate takes 5 “time units” to compute, while the or gate is twice as 
slow, taking 10 “time units”.  Note that the units of time can be whatever you want – as 
long as you put in consistent numbers. 

Defining constants 
Sometimes you want to have named constants - variables whose value you set in one 
place and use throughout a piece of code.  For example, setting the delay of all units in a 
module can be useful.  We do that as follows: 
// Compute the logical AND and OR of inputs A and B. 
module AND_OR(andOut, orOut, A, B); 
  output andOut, orOut; 
  input A, B; 
  parameter delay = 5; 
 
  and #delay TheAndGate (andOut, A, B); 
  or #delay TheOrGate (orOut, A, B); 
endmodule 
This sets the delay of both gates to the value of “delay”, which in this case is 5 time units.  
If we wanted to speed up both gates, we could change the value in the parameter line to 2. 

Testbeds 
Once a circuit is designed, you need some way to test it.  For example, we’d like to see 
how the NAND_NOR circuit we designed earlier behaves.  To do this, we create a 
testbed.  A testbed is a module that calls your unit under test (UUT) with the desired 
input patterns, and collects the results.  For example consider the following: 
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// Compute the logical AND and OR of inputs A and B. 
module AND_OR(andOut, orOut, A, B); 
  output andOut, orOut; 
  input A, B; 



 
  and TheAndGate (andOut, A, B); 
  or TheOrGate (orOut, A, B); 
endmodule 
 
// Compute the logical NAND and NOR of inputs X and Y. 
module NAND_NOR(nandOut, norOut, X, Y); 
  output nandOut, norOut; 
  input X, Y; 
  wire andVal, orVal; 
 
  AND_OR aoSubmodule (andVal, orVal, X, Y); 
  not n1 (nandOut, andVal); 
  not n2 (norOut, orVal); 
endmodule 
 
module TEST;  // No ports!  No-one else calls this unit 
  reg R, S; 
  wire a, o; 
   
  initial  // Stimulus 
  begin 
    R = 1; S = 1; 
    #10 R=0; 
    #10 S=0; 
    #10 R=1; 
  end 
 
  NAND_NOR UUT (a, o, R, S); 
 
  initial  // Response 
    $monitor($time, , a, o, , R, S); 
endmodule  

The code to notice is that of the module “TEST”.  It instantiates one copy of the 
NAND_NOR gate, called “UUT”.  All the inputs to the UUT are declared “reg”, while 
the outputs are declared “wire”.  The inputs are declared “reg” so that they will have 
memory, remembering the last value assigned to them – this is important to allow us to 
use the “initial” block for stimulus. 
In order to provide test data to the UUT, we have a stimulus block: 
  initial  // Stimulus 
  begin 
    R = 1; S = 1; 
    #10 R=0; 
    #10 S=0; 
    #10 R=1; 
  end 



The code inside the “initial” statement is only executed once.  It first sets R and S to true.  
Then, due to the “#10” the system waits 10 time units, keeping R and S at the assigned 
values.  We then set R to false.  Since S wasn’t changed, it remains at true.  Again we 
wait 10 time units, and then we change S to false (R remains at false).  If we consider the 
entire block, the inputs RS go through the pattern 11 -> 01 -> 00 -> 10, which tests all 
input combinations for this circuit.  Other orders are also possible.  For example we could 
have done: 
  initial  // Stimulus 
  begin 
    R = 0; S = 0; 
    #10 S=1; 
    #10 R=1; S=0; 
    #10 S=1; 
  end 

This goes through the pattern 00 -> 01 -> 10 -> 11. 
In order to capture the results of the computation, we display to the user the information 
with the stimulus code: 
  initial  // Response 
    $monitor($time, , a, o, , R, S); 

This tells Verilog to show information about values a, o, R, and S whenever any of them 
change.  It will print the time (in Verilog’s “time units”), a space, the values of a and o, a 
space, and the values of R and S.  Any variables can be included, in any order, in the 
monitor statement.  For the original code above, the resulting display would be: 
                   0 00 11 
                  10 10 01 
                  20 11 00 
                  30 10 10 

Time is the left column (advancing by 10 because that is when the inputs change), with 
the NAND and NOR being shown respectively, then R and S. 

$monitor in more detail 
Since $monitor will be one of your primary ways of getting information about your 
circuit, there are a couple things that will be important to know: 

1. X values: sometimes a signal will display an “X” instead of 0 or 1.  This is 
Verilog telling you “I can’t figure out what the value is”.  Mostly this means 
you’re debugging a sequential circuit (a circuit with state) and you didn’t reset a 
stateholding element.  It might also mean you hooked two gates to the same 
output (a BAD idea) and they’re saying different things.  In general, this is a 
warning sign.  “Z” can also be a problem, often meaning a signal isn’t hooked up 
to anything at all. 

2. Multiple $monitor printings for each input change: $monitor outputs data 
every time a signal being monitored changes.  If your circuit has delays in it, then 
for each input change there can be multiple $monitor outputs, since the signals 
being monitored change at slightly different times.  For example, if I monitor the 



input and output of a gate with 5 units of delay, the monitor will print twice – 
once for when the input changes, and once 5 units later when the output changes.  
Give lots of time between input changes, and always look at the last $monitor 
statement before the next input change – this is the one where the circuit has had 
long enough to stabilize at a new value. 

3. Debugging Hierarchical designs: You will often design circuits with modules, 
sub-modules, sub-sub-modules, etc.  Debugging them can be hard, because you 
only see the inputs and outputs of a cell, but really want to see what’s going on 
inside the sub-modules.  The good news – the $monitor statement can look inside 
submodules via the instance’s name.  For example, in the testbed example above 
we have a $monitor statement in the module TEST.  It has a submodule named 
UUT, which has a submodule aoSubmodule.  In the module TEST I could have 
had the following $monitor statement: 
$monitor($time, , a, UUT.X, UUT.aoSubmodule.orOut); 
Giving the name of a module instance and then a dot says to look inside that 
instance of the module, and get the variable specified after the dot.  So “UUT.X” 
says look in the UUT instance of the NAND_NOR module, and monitor it’s 
variable X. “UUT.aoSubmodule.orOut” says look in the UUT instance, and then 
inside it’s aoSubmodule, for the aoSubmodule’s orOut variable.  This format lets 
you look at any signal anywhere within a design. 

4. Strings in $monitor: If you want to display some text, you can also include that 
in a $monitor statement: 
$monitor(“The value of A is: “, a); 

Multiple files 
You can break your code into multiple files.  To put them together, one file can include 
the contents of another file via the include statement: 
`include "alu.v" 

Note that there is no semicolon on this line. 

Sequential Logic 
You will likely build all of your sequential elements out of D flip-flops: 
module D_FF (q, d, clk); 
  output q; 
  input d, clk; 
  reg q; // Indicate that q is stateholding 
 
  always @(posedge clk) // Hold value except at edge 
    q = d; 
endmodule 
Most of this should be familiar.  The new part is the “always @(posedge clk) q = d;” and 
the “reg” statement. 
For sequential circuits, we want to have signals that remember their prior value until it is 
overwritten.  We do this by the “reg” statement, which declares a variable that remembers 
the last value written to it – an implicit flip-flop.  This came in handy before in making 



testbeds, since we usually want to set up the inputs to remember their last setting, until 
we change it.  Here, the variable “q” in the D_FF module remembers the value written to 
it on the last important clock edge. 
We capture the input with the “always @(posedge clk)”, which says to only execute the 
following statement (q=d;) at the instant you see a positive edge of the clk.  That means 
we have a positive edge-triggered flip-flop.  We can build a negative edge-triggered flip-
flop via “always @(negedge clk)”. 

Clocks 
A sequential circuit will need a clock, supplied by the testbed.  We can do that with the 
following code: 
reg clk; 
parameter period = 100; // 2*period = length of clock 
                        // Make the clock LONG to test 
initial clk = 0; 
always #(period) clk = ~clk; 

This code would be put into the testbed code for your system, and all modules that are 
sequential (are D_FFs, or contain D_FFs) will take the clock as an input. 

Declaring Multi-bit Signals 
So far we have seen “wire” and “reg” statements that create single-bit signals (i.e. they 
are just 0 or 1).  Often you’d like to represent multi-bit wires (for example, a 3-bit wire 
that can represent values 0..7).  We can do this type of operation with the following 
declarations: 
wire [2:0] foo;  // a 3-bit signal (a bus) 
reg [15:0] bar;  // a 16-bit stateholding value 
These statements set up a set of individual wires, which can also be treated as a group.  
For example, the “wire [2:0] foo;” declares a 3-bit signal, which has the MSB (the 22’s 
place) as foo[2], the LSB (the 20’s place) as foo[0], and a middle bit of foo[1]. 
The individual signals can be used just like any other binary value in verilog.  For 
example, we could do: 
and a1(foo[2], foo[0], c); 

This AND’s together c and the 1’s place of foo, and puts the result in the 4’s place of foo. 
Multi-bit signals can also be passed together to a module: 
module random(bus1, bus2); 
 output [31:0] bus1; 
 input [19:0] bus2; 
 wire c; 
 
 another_random ar1(c, bus2, bus1); 
endmodule 

This module connects to two multi-bit signals (32 and 20 bits respectively), and passes 
both of them to another module “another_random”, which also connects to a single-bit 
wire c. 



Multi-bit Constants 
In testbeds and other places, you may want to assign a value to a multi-bit signal.  You 
can do this in several ways, shown in the following code: 
reg [15:0] test; 
initial begin // stimulus 
 test = 12; 
 #(10) test = ‘h1f; 

#(10) test = ‘b01101; 
end 

The 16-bit variable test is assigned three different values.  The first is in decimal, and 
represents twelve.  The second is a hexadecimal number (specified by the ‘h) 1f, or 
16+15 = 31.  The last is a binary number (specified by the ‘b) 01101 = 1+4+8 = 13.  In 
each case the value is assigned, in the equivalent binary, to the variable test.  Unspecified 
bits are padded to 0.  So, the line: 
test = 12; 
is equivalent to: 
test = ‘b0000000000001100; 

It sets test[2] and test[3] to 1, and all other bits to 0. 

Monitoring Multi-bit Signals 
Multi-bit constants can be put into $monitor statements just like any other values.  They 
will be displayed in decimal by default.  However, if you want to show them in another 
format, you can do the following: 
$monitor($time, " Hex: %h Dec: %d Bin: %b", f, g, h); 
This displays the time, and the value of variable f in Hexadecimal, g in Decimal, and h in 
Binary respectively.  This is controlled by the string in the monitor statement.  The string 
can contain any string of normal characters.  Also, whenever a % appears, it is followed 
by the base (h, d, or b).  It tells the $monitor statement to replace the %h, %d, or %b with 
the value of the next variable in the list following the string, formatted in the specified 
base.  That is, the first % takes the first variable in the list after the string, the second % 
takes the second variable, etc. 
You can display an actual % symbol by including %% in the string. 

Subsets 
Sometimes you want to break apart multi-bit values.  We can do that by selecting a subset 
of a value.  For example, if we have 
wire [31:0] foo; 
initial foo[3:1] = ‘b101; 

This would set foo[3] = 1, foo[2] = 0, and foo[1] = 1.  All other bits of foo will not be 
touched.  We could also use the same form to take a subset of a multi-bit wire and pass it 
as an input to another module. 



Note that this subdividing can be done to save you work in creating large, repetitive 
structures.  For example, consider the definition of a simple 16-bit register built from our 
D_FF unit defined above: 
module D_FF16(q, d, clk); 
  output [15:0] q; 
  input [15:0] d, clk; 
  reg q; 
 
  D_FF d0(q[0], d[0], clk); 
  D_FF d1(q[1], d[1], clk); 
… 
  D_FF d15(q[15], d[15], clk); 
endmodule 

with the 16 separate D_FF lines there’s a good likelihood you’ll make a mistake 
somewhere.  For a 32-bit register it’s almost guaranteed.  We can do it a bit more safely 
by repeatedly breaking down the problem into pieces.  For example, write a 4-bit register, 
and use it to build the 16-bit register: 
module D_FF4(q, d, clk); 
  output [3:0] q; 
  input [3:0] d, clk; 
  reg q; 
 
  D_FF d0(q[0], d[0], clk); 
  D_FF d1(q[1], d[1], clk); 
  D_FF d2(q[2], d[2], clk); 
  D_FF d3(q[3], d[3], clk); 
endmodule 
 
module D_FF16(q, d, clk); 
  output [15:0] q; 
  input [15:0] d, clk; 
  reg q; 
 
  D_FF4 d0(q[3:0], d[3:0], clk); 
  D_FF4 d1(q[7:4], d[7:4], clk); 
  D_FF4 d2(q[11:8], d[11:8], clk); 
  D_FF4 d3(q[15:12], d[15:12], clk); 
endmodule 

Concatenations 
Sometimes instead of breaking apart a bus into pieces, you instead want to group things 
together.  Anything inside {}’s gets grouped together. For example, if we want to swap 
the low and high 8 bits of an input to a DFF_16 we could do: 
  Wire [15:0] data, result; 
  D_FF16 d1(result, { data[7:0], data[15:8] }); 

Anything can go into the concatenation – constants, subsets, buses, single wires, etc. 



Example Finite State Machine 
Here’s an example of a simple sequential circuit, with all of its gory details.  Two notes 
of interest, both in the stimulus portion: 

1.) We delay changing inputs to the system to the negative clock edge, while the 
Flip-flops are positive edge triggered.  This ensures you don’t have a “race” 
condition – the ambiguity of whether the inputs change before or after the flip-
flops do their thing. 

2.) This circuit has a clock that runs on to infinity, so we need to explicitly tell 
Verilog when we are done.  The $finish command tells it when we are done 
simulating things. 

Note that this circuit computes parity – the output is true when the circuit has seen an odd 
number of trues on its input. 
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// Parity example 
 
module D_FF (q, d, clk); 
  output q; 
  input d, clk; 
  reg q; // Indicate that q is stateholding 
 
  always @(posedge clk) // Hold value except at clock edge 
    q = d; 
endmodule 
 
module Parity (out, in, reset, clk); 
  output out; 
  input in, reset, clk; 
  wire next_state, reset_bar, next_state_reset; 
 
  D_FF state_bit (out, next_state_reset, clk); 
  xor ns_function (next_state, in, out); 
  not n1 (reset_bar, reset); 



  and a1 (next_state_reset, next_state, reset_bar); 
endmodule 
 
module stimulus; 
  reg clk, reset, data; 
  wire value; 
  parameter period = 100; 
 
  Parity UUT(value, data, reset, clk); 
 
  initial // Set up the clock 
    clk = 0; 
  always 
    #(period) clk = ~clk; // Toggle clock every 100 units 
 
  initial // Set up the inputs 
  begin 
    reset = 1; data = 0; 
    @(negedge clk) reset = 0; 
    @(negedge clk); 
    @(negedge clk) data = 1; 
    @(negedge clk) data = 0; 
    @(negedge clk) data = 1; 
    @(negedge clk); 
    @(negedge clk); 
    @(negedge clk); 
    @(negedge clk) $finish; // end the simulation 
  end 
 
  initial // View the results 
    $monitor($time, " clk: %b reset: %b data: %b value:  
%b", clk, reset, data, value); 
 
endmodule 
 


