
ENGR xD52: MP b000

Due September 24th 5PM EST

This lab assignment will develop some of the basic building blocks for your processor and introduce you

to Verilog.

You may work in groups of up to 3. One representative from each team must submit all deliverables

electronically to comparch2012@gmail.com as a single compressed archive. Please format the email’s

Header as “[CA] [MP0] Name1 Name2 Name3”

The Modules
Construct each of the following modules in Structural Verilog:

1. 4:1 (four input Multiplexor)

2. 2-bit decoder with enable (2+1 inputs, 4 outputs)

3. 1-bit Full Adder

4. 4-bit Full Adder

All logic must be done gate level and structural, using only the basic gates NOT AND NAND OR NOR XOR.

You may re-use modules between the four.

 Do not use behavioral constructs such as ‘assign’ or ‘case’.

Give all of your basic gates a 50 unit time delay.

For each module, also write a behavioral test bench that shows the module-under-test to be correct.

The Write Up
Create a semi-formal lab write up detailing the modules, their expected behavior, and their tested

behavior. Include the waveform outputs of your test benches. If you do not perform exhaustive testing,

explain why it was not necessary.

Optionally, include additional information, such as the timing performance or design tradeoffs of your

modules.

This should be a single document bundled into the submitted archive.

mailto:comparch2012@gmail.com

Hints / Notes

Gate delays
In order to model some sort of delay for our gates, simply put these statements at the top of your

Verilog source:

// define gates with delays

`define AND and #50

`define OR or #50

`define NOT not #50

Then, when you go to instantiate an AND, for instance, instead of using just “and”, use `AND. That is,

back-tick followed by the define you specified. Think of the back-tick as a macro definition.

That means that the gate, `AND, has a delay of 50 units. Then, in your simulation, you should wait

between transitions of the input long enough to allow the signals to propagate to the output of your

circuit.

Signal Declaration
You need to declare all your inputs and outputs and all the intermediate signals you use in your designs.

Thus, if you have the statement:

and (out, in1, in2)

you need to have previously declared out, in1, and in2, to be some sort of physical entity (wire, reg).

